Ir al contenido

Documat


On groups interpretable in various valued fields

  • Yatir Halevi [1] ; Assaf Hasson [2] ; Ya acov Peterzil [1] Árbol académico
    1. [1] University of Haifa

      University of Haifa

      Israel

    2. [2] Department of Mathematics, Ben Gurion University of the Negev, Israel
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-64
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00946-2
  • Enlaces
  • Resumen
    • We study infinite groups interpretable in three families of valued fields: V-minimal, power bounded T -convex, and p-adically closed fields. We show that every such group G has unbounded exponent and that if G is dp-minimal then it is abelian-byfinite. Along the way, we associate with any infinite interpretable group an infinite type-definable subgroup which is definably isomorphic to a group in one of four distinguished sorts: the underlying valued field K, its residue field k (when infinite), its value group , or K/O, where O is the valuation ring. Our work uses and extends techniques developed in Halevi et al. (Adv Math 404:108408, 2022) to circumvent elimination of imaginaries.

  • Referencias bibliográficas
    • Acosta, J.P.: One-dimensional commutative groups definable in algebraically closed valued fields and in the pseudo-local fields (2021). arXiv...
    • Acosta López, J.P.: One-dimensional groups definable in the p-adic numbers. J. Symb. Log. 86(2), 801–816 (2021).
    • Chambille, S., Kovacsics, P.C., Leenknegt, E.: Exponential-constructible functions in P-minimal structures. J. Math. Log. 20(2), 29 (2020).
    • Cluckers, R.: Presburger sets and p-minimal fields. J. Symb. Log. 68(1), 153–162 (2003).
    • Cluckers, R., Halupczok, I.: Quantifier elimination in ordered abelian groups. Conflu. Math. 3(4), 587–615 (2011).
    • Cluckers, R., Halupczok, I., Rideau-Kikuchi, S.: Hensel minimality I. Forum Math. 10, e11 (2022).
    • Cluckers, R., Halupczok, I., Rideau-Kikuchi, S., Vermeulen, F.: Hensel minimality II: mixed characteristic and a diophantine application (2021)....
    • Denef, J., van den Dries, L.: p-adic and real subanalytic sets. Ann. Math. (2) 128(1), 79–138 (1988).
    • Dugundji, J.: Topology. Allyn and Bacon series in Advanced Mathematics, Allyn and Bacon, Boston (1966).
    • Gagelman, J.: Stability in geometric theories. Ann. Pure Appl. Log. 132(2–3), 313–326 (2005).
    • Halevi, Y., Hasson, A., Peterzil, Y.: Interpretable fields in various valued fields. Adv. Math. 404, 108408 (2022).
    • Halevi, Y., Hasson, A., Peterzil, Y.: Semisimple groups interpretable in various valued fields (2023). arXiv e-prints, arXiv:2309.02727.
    • Haskell, D., Hrushovski, E., Macpherson, D.: Definable sets in algebraically closed valued fields: elimination of imaginaries. J. Reine Angew....
    • Hrushovski, E., Kazhdan, D.: Integration in valued fields. In: Ginzburg, V. (ed.) Algebraic Geometry and Number Theory. Progress in Mathematics,...
    • Hrushovski, E., Martin, B., Rideau, S.: Definable equivalence relations and zeta functions of groups. J. Eur. Math. Soc. (JEMS) 20(10), 2467–2537...
    • Hrushovski, E., Pillay, A.: Groups definable in local fields and pseudo-finite fields. Isr. J. Math. 85(1–3), 203–262 (1994).
    • Hrushovski, E., Rideau-Kikuchi, S.: Valued fields, metastable groups. Sel. Math. (N.S.) 25(3), 47 (2019).
    • Johnson, W.: The canonical topology on dp-minimal fields. J. Math. Log. 18(2), 1850007–23 (2018).
    • Johnson, W.: Topologizing interpretable groups in p-adically closed fields. Notre Dame J. Formal Logic 64(4), 571–609 (2023). https://doi.org/10.1215/00294527-2023-0015.
    • Johnson, W., Yao, N.: On non-compact p-adic definable groups. J. Symb. Log. 87(1), 188–213 (2022). https://doi.org/10.1017/jsl.2021.93.
    • Maˇríková, J.: Type-definable and invariant groups in o-minimal structures. J. Symb. Log. 72(1), 67–80 (2007).
    • Mellor, T.: Imaginaries in real closed valued fields. Ann. Pure Appl. Log. 139(1–3), 230–279 (2006).
    • Montenegro, S., Onshuus, A., Simon, P.: Stabilizers, NTP2 groups with f-generics, and PRC fields. J. Inst. Math. Jussieu 19(3), 821–853 (2020).
    • Onshuus, A., Vicaría, M.: Definable groups in models of Presburger arithmetic. Ann. Pure Appl. Log. 171(6), 102795 (2020).
    • Peterzil, Y., Starchenko, S.: Topological groups, μ-types and their stabilizers. J. Eur. Math. Soc. (JEMS) 19(10), 2965–2995 (2017).
    • Pillay, A.: On groups and fields definable in o-minimal structures. J. Pure Appl. Algebra 53(3), 239–255 (1988).
    • Pillay, A., Yao, N.: A note on groups definable in the p-adic field. Arch. Math. Log. 58(7–8), 1029–1034 (2019).
    • Poizat, B.: MM. Borel, Tits, Zilber et le Général Nonsense. J. Symb. Log. 53(1), 124–131 (1988).
    • Poizat, B.: Stable Groups. Mathematical Surveys and Monographs, vol. 87. American Mathematical Society, Providence (2001). Translated from...
    • Simon, P.: On dp-minimal ordered structures. J. Symb. Log. 76(2), 448–460 (2011).
    • Simon, P.: Dp-minimality: invariant types and dp-rank. J. Symb. Log. 79(4), 1025–1045 (2014).
    • Simon, P.: A Guide to NIP Theories. Lecture Notes in Logic. Association for Symbolic Logic, Cambridge University Press, Cambridge (2014).
    • Simon, P., Walsberg, E.: Tame topology over dp-minimal structures. Notre Dame J. Formal Logic 60(1), 61–76 (2019).
    • Simonetta, P.: An example of a C-minimal group which is not abelian-by-finite. Proc. Am. Math. Soc. 131(12), 3913–3917 (2003).
    • Strzebonski, A.W.: Euler characteristic in semialgebraic and other o-minimal groups. J. Pure Appl. Algebra 96(2), 173–201 (1994).
    • van den Dries, L.P.D.: Weil’s group chunk theorem: a topological setting. Ill. J. Math. 34(1), 127–139 (1990).
    • van den Dries, L.: Algebraic theories with definable Skolem functions. J. Symb. Log. 49(2), 625–629 (1984).
    • van den Dries, L.: T-convexity and tame extensions. II. J. Symb. Log. 62(1), 14–34 (1997).
    • van den Dries, L.: Tame Topology and O-minimal Structures. London Mathematical Society Lecture Note Series, vol. 248. Cambridge University...
    • van den Dries, L., Haskell, D., Macpherson, D.: One-dimensional p-adic subanalytic sets. J. Lond. Math. Soc. (2) 59(1), 1–20 (1999).
    • Pillay, A.: On fields definable in Q p. Arch. Math. Log. 29(1), 1–7 (1989)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno