Ir al contenido

Documat


CNED sets: countably negligible for extremal distances

  • Dimitrios Ntalampekos [1]
    1. [1] Stony Brook University

      Stony Brook University

      Town of Brookhaven, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-57
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00951-5
  • Enlaces
  • Resumen
    • The author has recently introduced the class of CNED sets in Euclidean space, generalizing the classical notion of NED sets, and shown that they are quasiconformally removable. A set E is CNED if the conformal modulus of a curve family is not affected when one restricts to the subfamily intersecting E at countably many points. We prove that several classes of sets that were known to be removable are also CNED, including sets of σ-finite Hausdorff (n − 1)-measure and boundaries of domains with n-integrable quasihyperbolic distance. Thus, this work puts in common framework many known results on the problem of quasiconformal removability and suggests that the CNED condition should also be necessary for removability. We give a new necessary and sufficient criterion for closed sets to be (C)NED. Applying this criterion, we show that countable unions of closed (C)NED sets are (C)NED. Therefore we enlarge significantly the known classes of quasiconformally removable sets.

  • Referencias bibliográficas
    • Ahlfors, L., Beurling, A.: Conformal invariants and function-theoretic null-sets. Acta Math. 83, 101–129 (1950).
    • Aseev, V.V., Syˇcev, A.V.: Sets that are removable for quasiconformal mappings in space. Sibirsk. Mat. Ž. 15, 1213–1227 (1974).
    • Aseev, V.V.: NED sets lying in a hyperplane. Sibirsk. Mat. Zh. 50(5), 967–986 (2009).
    • Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry, Graduate Studies in Mathematics, vol. 33. American Mathematical Society,...
    • Besicovitch, A.S.: On sufficient conditions for a function to be analytic, and on behaviour of analytic functions in the neighbourhood of...
    • Bishop, C.J.: Some homeomorphisms of the sphere conformal off a curve. Ann. Acad. Sci. Fenn. Ser. A I Math. 19(2), 323–338 (1994).
    • Bogachev, V.I.: Measure Theory, vol. I. Springer-Verlag, Berlin (2007).
    • Bojarski, B.: Remarks on Sobolev imbedding inequalities, Complex analysis, Joensuu 1987, Lecture Notes in Mathematics. Springer, Berlin, pp....
    • Carleson, L.: On null-sets for continuous analytic functions. Ark. Mat. 1, 311–318 (1951).
    • Federer, H.: Geometric measure theory, Grundlehren der mathematischen Wissenschaften, vol. 153. Springer-Verlag New York Inc., New York (1969).
    • Fremlin, D.H.: Spaces of finite length. Proc. Lond. Math. Soc. (3) 64(3), 449–486 (1992).
    • Gehring, F.W.: Rings and quasiconformal mappings in space. Trans. Am. Math. Soc. 103, 353–393 (1962).
    • Gehring, F.W., Martio, O.: Quasiextremal distance domains and extension of quasiconformal mappings. J. Anal. Math. 45, 181–206 (1985).
    • Hajłasz, P.: Sobolev spaces on metric-measure spaces, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002): Contemp....
    • Heinonen, J.: Lectures on analysis on metric spaces. Universitext, Springer-Verlag, New York (2001).
    • Hesse, J.: A p-extremal length and p-capacity equality. Ark. Mat. 13, 131–144 (1975).
    • Herron, D.A., Koskela, P.: Quasiextremal distance domains and conformal mappings onto circle domains. Complex Var. Theory Appl. 15(3), 167–179...
    • Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev spaces on metric measure spaces. An approach based on upper gradients,...
    • Järvenpää, E., Järvenpää, M., Rogovin, K., Rogovin, S., Shanmugalingam, N.: Measurability of equivalence classes and MECp-property in metric...
    • Jones, P.W.: On removable sets for Sobolev spaces in the plane, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991),...
    • Jones, P.W., Smirnov, S.K.: Removability theorems for Sobolev functions and quasiconformal maps. Ark. Mat. 38(2), 263–279 (2000).
    • Kaufman, R.: Fourier-Stieltjes coefficients and continuation of functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 27–31 (1984).
    • Kallunki, S., Koskela, P.: Exceptional sets for the definition of quasiconformality. Am. J. Math. 122(4), 735–743 (2000).
    • Koskela, P., Nieminen, T.: Quasiconformal removability and the quasihyperbolic metric. Indiana Univ. Math. J. 54(1), 143–151 (2005).
    • Kaufman, R., Wu, J.-M.: On removable sets for quasiconformal mappings. Ark. Mat. 34(1), 141–158 (1996).
    • Maio, S., Ntalampekos, D.: On the Hausdorff dimension of the residual set of a packing by smooth curves. J. Lond. Math. Soc. 105(3), 1752–1786...
    • Ntalampekos, D.: Non-removability of the Sierpiński gasket. Invent. Math. 216(2), 519–595 (2019).
    • Ntalampekos, D.: A removability theorem for Sobolev functions and detour sets. Math. Z. 296, 41–72 (2020)
    • Ntalampekos, D.: Non-removability of Sierpiński carpets. Indiana Univ. Math. J. 70(3), 847–854 (2021).
    • Ntalampekos, D.: Rigidity and continuous extension for conformal maps of circle domains. Trans. Am. Math. Soc. 376(7), 5221–5239 (2023).
    • Ntalampekos, D.: Metric definition of quasiconformality and exceptional sets. Math. Ann. 389(3), 3231–3253 (2024).
    • Ntalampekos, D., Wu, J.-M.: Non-removability of Sierpiński spaces. Proc. Am. Math. Soc. 148, 203–212 (2020).
    • Ntalampekos, D., Younsi, M.: Rigidity theorems for circle domains. Invent. Math. 220(1), 129–183 (2020).
    • Sierpiński, W.: Sur un problème concernant les ensembles mesurables superficiellement. Fund. Math. 1(1), 112–115 (1920).
    • Smith, W., Stegenga, D.A.: Hölder domains and Poincaré domains. Trans. Am. Math. Soc. 319(1), 67–100 (1990).
    • Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30. Princeton University...
    • Tukia, P.: Hausdorff dimension and quasisymmetric mappings. Math. Scand. 65(1), 152–160 (1989).
    • Väisälä, J.: On the null-sets for extremal distances. Ann. Acad. Sci. Fenn. Ser. A I 322, 1–12 (1962).
    • Väisälä, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics, vol. 229. Springer-Verlag, Berlin-New York (1971).
    • Willard, S.: General topology. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. (1970).
    • Wu, J.-M.: Removability of sets for quasiconformal mappings and Sobolev spaces. Complex Var. Theory Appl. 37(1–4), 491–506 (1998).
    • Younsi, M.: On removable sets for holomorphic functions. EMS Surv. Math. Sci. 2(2), 219–254 (2015).
    • Younsi, M.: Removability, rigidity of circle domains and Koebe’s conjecture. Adv. Math. 303, 1300–1318 (2016).
    • Ziemer, W.P.: Weakly differentiable functions: Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, vol. 120....
    • He, Z.-X., Schramm, O.: Rigidity of circle domains whose boundary has σ-finite linear measure. Invent. Math. 115(2), 297–310 (1994)
    • Pesin, I.N.: Metric properties of Q-quasiconformal mappings. Mat. Sb. N.S 40(82), 281–294 (1956)
    • Shlyk, V.A.: On the equality between p-capacity and p-modulus. Sibirsk. Mat. Zh. 34(6), 216–221 (1993)
    • Vodopyanov, S.K., Goldshtein, V.M.: A test of the removability of sets for L1 spaces of quasiconformal and quasi-isomorphic mappings. Sibirsk....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno