Ir al contenido

Documat


A tale of two shuffle algebras

  • Andrei Negut [1]
    1. [1] Department of Mathematics, MIT, Cambridge, MA, USA Simion Stoilow Institute of Mathematics, Bucharest, Romania
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-95
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00941-7
  • Enlaces
  • Resumen
    • As a quantum affinization, the quantum toroidal algebraUq,q (gl¨ n)is defined in terms of its “left” and “right” halves, which both admit shuffle algebra presentations (Enriquez in Transform Groups 5(2):111–120, 2000; Feigin and Odesskii in Am Math Soc Transl Ser 2:185, 1998). In the present paper, we take an orthogonal viewpoint, and give shuffle algebra presentations for the “top” and “bottom” halves instead, starting from the evaluation representation Uq (gl˙ n) Cn(z) and its usual R-matrix R(z) ∈ End(Cn⊗Cn)(z)(see Faddeev et al. in LeningradMath J 1:193–226, 1990). An upshot of this construction is a new topological coproduct on Uq,q (gl¨ n) which extends the Drinfeld–Jimbo coproduct on the horizontal subalgebra Uq (gl˙ n) ⊂ Uq,q (gl¨ n).

  • Referencias bibliográficas
    • Beck, J.: Braid group action and quantum affine algebras. Commun. Math. Phys. 165, 555–568 (1994).
    • Burban, I., Schiffmann, O.: On the Hall algebra of an elliptic curve, I. Duke Math. J. 161(7), 1171–1231 (2012).
    • Ding, J., Iohara, K.: Generalization of Drinfeld quantum affine algebras. Lett. Math. Phys. 41(2), 181–193 (1997).
    • Drinfeld, V.G.: A new realization of Yangians and quantized affine algebras. Soviet Math. Dokl. 36, 212–216 (1988).
    • Enriquez, B.: On correlation functions of Drinfeld currents and shuffle algebras. Transform. Groups 5(2), 111–120 (2000).
    • Faddeev, L., Reshetikhin, N., Takhtajan, L.: Quantization of Lie groups and Lie algebras. Leningrad Math. J. 1, 193–226 (1990).
    • Feigin, B., Odesskii, A.: Vector bundles on elliptic curve and Sklyanin algebras, Topics in Quantum Groups and Finite-Type Invariants. Am....
    • Mudrov, A.I.: Reflection equation and twisted Yangians. J. Math. Phys. 48, 093501 (2007).
    • Negut, A.: Shuffle algebra revisited. Int. Math. Res. Not. 2014(22), 6242–6275 (2014).
    • Negut, A.: Quantum toroidal and shuffle algebras. Adv. Math. 372, 107288 (2020).
    • Schiffmann, O.: Drinfeld realization of the elliptic Hall algebra. J. Algebr. Comb. 35(2), 237–262 (2012).
    • Wendlandt, C.: The 𝑅 R-matrix presentation for the Yangian of a simple Lie algebra. Commun. Math. Phys. 363(1), 289–332 (2018).
    • Ding, J., Frenkel, I.: Isomorphism of two realizations of quantum affine algebra Uq (gl n). Commun. Math. Phys. 156(2), 277–300 (1993)
    • Feigin, B., Hashizume, K., Hoshino, A., Shiraishi, J., Yanagida, S.: A commutative algebra on degenerate CP1 and MacDonald polynomials. J....
    • Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Representations of quantum toroidal gln. J. Algebra 380, 78–108 (2013)
    • Miki, K.: A (q,γ) analog of the W1+∞ algebra. J. Math. Phys. 48(12) (2007)
    • Negut,, A.: PBW basis for Uq,q (gl¨ n). Transform. Groups (2022). https://doi.org/10.1007/s00031-022- 09696-x
    • Negut,, A.: Deformed W-algebras in type A for rectangular nilpotent. Commun. Math. Phys. 389, 153–195 (2022)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno