Ir al contenido

Documat


GL-algebras in positive characteristic I: the exterior algebra

  • Karthik Ganapathy [1]
    1. [1] University of Michigan–Ann Arbor

      University of Michigan–Ann Arbor

      City of Ann Arbor, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-33
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00960-4
  • Enlaces
  • Resumen
    • We study the category of GL-equivariant modules over the infinite exterior algebra in positive characteristic. Our main structural result is a shift theorem à la Nagpal. Using this, we obtain a Church–Ellenberg type bound for the Castelnuovo–Mumford regularity. We also prove finiteness results for local cohomology

  • Referencias bibliográficas
    • Bibby, C., Gadish, N.: Combinatorics of orbit configuration spaces. Sém. Lothar. Combin. 80B . 72, 11 (2018).
    • Bik, A., Danelon, A., Draisma, J., Eggermont, R.H.: Universality of high-strength tensors. Vietnam J. Math. 50(2), 557–580 (2022).
    • Bik, A., Draisma, J., Eggermont, R.H., Snowden, A.: The geometry of polynomial representations. Int. Math. Res. Not. IMRN, 14131–14195 (2023).
    • Brouwer, A.E., Draisma, J.: Equivariant Gröbner bases and the Gaussian two-factor model. Math. Comput. 80(274), 1123–1133 (2011). arXiv:0908.1530.
    • Church, T., Ellenberg, J.: Homology of FI-modules. Geom. Topol. 21(4), 2373–2418 (2017).
    • Church, T., Ellenberg, J.S., Farb, B.: FI-modules and stability for representations of symmetric groups. Duke Math. J. 164(9), 1833–1910 (2015).
    • Cohen, D.E.: On the laws of a metabelian variety. J. Algebra 5(3), 267–273 (1967).
    • Djament, A.: Des propriétés de finitude des foncteurs polynomiaux. Fund. Math. 233(3), 197–256 (2016). arXiv:1308.4698.
    • Draisma, J.: Finiteness for the k-factor model and chirality varieties. Adv. Math. 223(1), 243–256 (2010). arXiv:0811.3503.
    • Draisma, J., Eggermont, R.H.: Finiteness results for Abelian tree models. J. Eur. Math. Soc. (JEMS) 17(4), 711–738 (2015). arXiv:1207.1282.
    • Erman, D., Sam, S.V., Snowden, A.: Generalizations of Stillman’s conjecture via twisted commutative algebra. Int. Math. Res. Not. IMRN 2021(16),...
    • Faith, C.: Algebra: Rings, Modules and Categories I, volume 190. Springer Science & Business Media (2012).
    • Friedlander, E.M., Suslin, A.: Cohomology of finite group schemes over a field. Invent. Math. 127(2), 209–270 (1997).
    • Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962).
    • Gan, W.L., Li, L.: An inductive machinery for representations of categories with shift functors. Trans. Am. Math. Soc. 371(12), 8513–8534...
    • Gan, W.L., Li, L.: Bounds on homological invariants of VI-modules. Mich. Math. J. 69(2), 273–284 (2020).
    • Ganapathy, K.: GL-algebras in positive characteristic II: The polynomial ring (in preparation).
    • Gandini, F.: Degree bounds for invariant skew polynomials. Preprint (2021). arXiv:2108.01767.
    • Gandini, F.: Resolutions of ideals of subspace arrangements. J. Commut. Algebra 14(3), 319–338 (2022).
    • Güntürkün, S., Snowden, A.: The representation theory of the increasing monoid. Mem. Am. Math. Soc. 286(1420), 134 (2023).
    • Harman, N.: Stability and periodicity in the modular representation theory of symmetric groups. Preprint (2015). arXiv:1509.06414.
    • Kujawa, J.: The Steinberg tensor product theorem for GL(m|n). Contemp. Math. 413, 123 (2006).
    • Laudone, R.P.: Syzygies of secant ideals of Plücker-embedded Grassmannians are generated in bounded degree. Preprint (2018). arXiv:1803.04259.
    • Le, D.V., Nagel, U., Nguyen, H.D., Römer, T.: Codimension and projective dimension up to symmetry. Math. Nachr. 293(2), 346–362 (2020).
    • Le, D.V., Nagel, U., Nguyen, H.D., Römer, T.: Castelnuovo–Mumford regularity up to symmetry. Int. Math. Res. Not. 2021(14), 11010–11049 (2021).
    • Li, L., Yu, N.: Filtrations and homological degrees of FI-modules. J. Algebra 472, 369–398 (2017).
    • Maraj, A., Nagel, U.: Equivariant Hilbert series for hierarchical models. Algebr. Stat. 12(1), 21–42 (2021).
    • Miller, J., Nagpal, R., Patzt, P.: Stability in the high-dimensional cohomology of congruence subgroups. Compos. Math. 156(4), 822–861 (2020).
    • Miller, J., Wilson, J.: Higher-order representation stability and ordered configuration spaces of manifolds. Geom. Topol. 23(5), 2519–2591...
    • Murai, S.: Betti tables of monomial ideals fixed by permutations of the variables. Trans. Am. Math. Soc. 373(10), 7087–7107 (2020).
    • Nagel, U., Römer, T.: FI- and OI-modules with varying coefficients. J. Algebra 535, 286–322 (2019).
    • Nagpal, R.: FI-modules and the cohomology of modular representations of symmetric groups. Ph.D. thesis, The University of Wisconsin-Madison...
    • Nagpal, R.: VI-modules in nondescribing characteristic, part I. Algebra Number Theory 13(9), 2151–2189 (2019).
    • Nagpal, R., Sam, S.V., Snowden, A.: Noetherianity of some degree two twisted commutative algebras. Selecta Math. (N.S.) 22(2), 913–937 (2016).
    • Nagpal, R., Sam, S.V., Snowden, A.: Regularity of FI-modules and local cohomology. Proc. Am. Math. Soc. 146(10), 4117–4126 (2018).
    • Nagpal, R., Sam, S.V., Snowden, A.: Noetherianity of some degree two twisted skew-commutative algebras. Selecta Math. (N.S.) 25(1), 1–26 (2019).
    • Nagpal, R., Snowden, A.: Symmetric subvarieties of infinite affine space. Preprint (2020). arXiv:2011.09009.
    • Nagpal, R., Snowden, A.: Symmetric ideals of the infinite polynomial ring. Preprint (2021). arXiv:2107.13027.
    • Putman, A., Sam, S.V.: Representation stability and finite linear groups. Duke Math. J. 166(13), 2521–2598 (2017).
    • Ramos, E.: Generalized representation stability and FId-modules. Proc. Am. Math. Soc. 145(11), 4647–4660 (2017).
    • Sam, S.V., Snowden, A.: Introduction to twisted commutative algebras. Preprint (2012). arXiv:1209.5122.
    • Sam, S.V., Snowden, A.: GL-equivariant modules over polynomial rings in infinitely many variables. Trans. Am. Math. Soc. 368(2), 1097–1158...
    • Sam, S.V., Snowden, A.: Gröbner methods for representations of combinatorial categories. J. Am. Math. Soc. 30(1), 159–203 (2017).
    • Sam, S.V., Snowden, A.: GL-equivariant modules over polynomial rings in infinitely many variables II. Forum Math. Sigma 7, 71 (2019).
    • Sam, S.V., Snowden, A.: Sp-equivariant modules over polynomial rings in infinitely many variables. Trans. Am. Math. Soc. 375(3), 1671–1701...
    • Snowden, A.: Syzygies of Segre embeddings and 𝜀 ε-modules. Duke Math. J. 162(2), 225–277 (2013). arXiv:1006.5248.
    • Snowden, A.: Stable representation theory: beyond the classical groups. Preprint (2021). arXiv:2109.11702.
    • Snowden, A.: The spectrum of a twisted commutative algebra. Proc. Lond. Math. Soc. (3) 128(1) No. e12576, 22 (2024).
    • Totaro, B.: Projective resolutions of representations of GL(n). J. Reine Angew. Math. 482, 1–13 (1997).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno