Ir al contenido

Documat


Zero-cycles in families of rationally connected varieties

  • Morten Lüders [1]
    1. [1] Heidelberg University

      Heidelberg University

      Stadtkreis Heidelberg, Alemania

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-43
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00963-1
  • Enlaces
  • Resumen
    • We study zero-cycles in families of rationally connected varieties. We show that for a smooth projective scheme over a henselian discrete valuation ring the restriction of relative zero cycles to the special fiber induces an isomorphism on Chow groups if the special fiber is separably rationally connected. We further extend this result to certain higher Chow groups and develop conjectures in the non-smooth case. Our main results generalise a result of Kollár (Publ. Res. Inst. Math. Sci. 40(3):689–708, 2004).

  • Referencias bibliográficas
    • Araujo, C., Kollár, J.: Rational curves on varieties. In: Higher Dimensional Varieties and Rational Points (Budapest, 2001), vol. 12 of Bolyai...
    • Baum, P., Fulton, W., MacPherson, R.: Riemann–Roch for singular varieties. Inst. Hautes Études Sci. Publ. Math. 45, 101–145 (1975).
    • Be˘ılinson, A.A.: Height pairing between algebraic cycles. In: K-Theory, Arithmetic and Geometry (Moscow, 1984–1986), vol. 1289 of Lecture...
    • Binda, F., Krishna, A.: Zero cycles with modulus and zero cycles on singular varieties. Compos. Math. 154(1), 120–187 (2018).
    • Binda, F., Krishna, A.: Rigidity for relative 0-cycles. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22(1), 241–267 (2021).
    • Binda, F., Krishna, A.: Zero-cycle groups on algebraic varieties. J. Éc. polytech. Math. 9, 281–325 (2022).
    • Bloch, S.: Algebraic cycles and higher K-theory. Adv. Math. 61(3), 267–304 (1986).
    • Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4) 7(1974), 181–201 (1975).
    • Colliot-Thélène, J.-L.: Hilbert’s Theorem 90 for 𝐾2K 2, with application to the Chow groups of rational surfaces. Invent. Math. 71(1),...
    • Colliot-Thélène, J.-L.: Un théorème de finitude pour le groupe de Chow des zéro-cycles d’un groupe algébrique linéaire sur un corps p-adique....
    • Colliot-Thélène, J.-L., Coray, D.: L’équivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques. Compos....
    • Dahlhausen, C.: Milnor K-theory of complete discrete valuation rings with finite residue fields. J. Pure Appl. Algebra 222(6), 1355–1371 (2018).
    • Déglise, F.: Transferts sur les groupes de Chow à coefficients. Math. Z. 252(2), 315–343 (2006).
    • Elkik, R.: Solutions d’équations à coefficients dans un anneau hensélien. Ann. Sci. École Norm. Sup. (4) 6(1973), 553–603 (1974).
    • Esnault, H., Wittenberg, O.: On the cycle class map for zero-cycles over local fields. Ann. Sci. Éc. Norm. Supér. (4) 49(2), 483–520 (2016)....
    • Forré, P.: The kernel of the reciprocity map of varieties over local fields. J. Reine Angew. Math. 698, 55–69 (2015).
    • Fulton, W.: Intersection theory, second ed., vol. 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys...
    • Gille, P., Szamuely, T.: Central Simple Algebras and Galois Cohomology. Cambridge Studies in Advanced Mathematics, vol. 101. Cambridge University...
    • Grothendieck, A.: Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. Inst. Hautes Études Sci. Publ. Math....
    • Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci....
    • Gupta, R., Krishna, A.: K-theory and 0-cycles on schemes. J. Algebraic Geom. 29(3), 547–601 (2020).
    • Hartshorne, R.: Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix...
    • Jannsen, U.: Motivic sheaves and filtrations on Chow groups. In: Motives (Seattle, WA, 1991), vol. 55 of Proceedings of the Symposium in Pure...
    • Kato, K.: Milnor K-theory and the Chow group of zero cycles. In: Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory,...
    • Kato, K., Saito, S.: Unramified class field theory of arithmetical surfaces. Ann. Math. (2) 118(2), 241–275 (1983).
    • Kato, K., Saito, S.: Global class field theory of arithmetic schemes. In: Applications of Algebraic K-Theory to Algebraic Geometry and Number...
    • Kerz, M.: Milnor K-theory of local rings with finite residue fields. J. Algebraic Geom. 19(1), 173–191 (2010).
    • Kerz, M., Esnault, H., Wittenberg, O.: A restriction isomorphism for cycles of relative dimension zero. Camb. J. Math. 4(2), 163–196 (2016).
    • Kerz, M., Saito, S.: Cohomological Hasse principle and motivic cohomology for arithmetic schemes. Publ. Math. Inst. Hautes Études Sci. 115,...
    • Kollár, J.: Rational curves on algebraic varieties, vol. 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern...
    • Kollár, J.: Specialization of zero cycles. Publ. Res. Inst. Math. Sci. 40(3), 689–708 (2004).
    • Kollár, J., Miyaoka, Y., Mori, S.: Rationally connected varieties. J. Algebraic Geom. 1(3), 429–448 (1992).
    • Kollár, J., Szabó, E.: Rationally connected varieties over finite fields. Duke Math. J. 120(2), 251–267 (2003).
    • Levine, M., Weibel, C.: Zero cycles and complete intersections on singular varieties. J. Reine Angew. Math. 359, 106–120 (1985).
    • Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics, vol. 6. Oxford University Press, Oxford (2002). (Translated...
    • Lüders, M.: On a base change conjecture for higher zero-cycles. Homol. Homotopy Appl. 20(1), 59–68 (2018).
    • Lüders, M.: Algebraization for zero-cycles and the p-adic cycle class map. Math. Res. Lett. 26(2), 557–585 (2019).
    • Lüders, M.: A restriction isomorphism for zero-cycles with coefficients in Milnor K-theory. Camb. J. Math. 7(1–2), 1–31 (2019).
    • Lüders, M.: On the relative Gersten conjecture for Milnor K-theory in the smooth case. J. Pure Appl. Algebra 228(11), 107718 (2024).
    • Mazza, C., Voevodsky, V., Weibel, C.: Lecture notes on motivic cohomology, vol. 2 of Clay Mathematics Monographs. American Mathematical Society,...
    • Nesterenko, Y.P., Suslin, A.A.: Homology of the general linear group over a local ring, and Milnor’s K-theory. Izv. Akad. Nauk SSSR Ser. Mat....
    • Panin, I.A.: The equicharacteristic case of the Gersten conjecture. Tr. Mat. Inst. Steklova 241, Teor. Chisel, Algebra i Algebr. Geom., pp....
    • Rost, M.: Chow groups with coefficients. Doc. Math. 1(16), 319–393 (1996).
    • Saito, S., Sato, K.: A finiteness theorem for zero-cycles over p-adic fields. Ann. Math. (2) 172(3), 1593–1639 (2010). (With an appendix by...
    • Saito, S., Sato, K.: A p-adic regulator map and finiteness results for arithmetic schemes. Doc. Math., Extra vol.: Andrei A. Suslin sixtieth...
    • Saito, S., Sato, K.: Zero-cycles on varieties over p-adic fields and Brauer groups. Ann. Sci. Éc. Norm. Supér. (4) 47(3), 505–537 (2014).
    • Sato, K.: Higher-dimensional arithmetic using p-adic étale Tate twists. Homol. Homotopy Appl. 7(3), 173–187 (2005).
    • Sato, K.: p-adic étale Tate twists and arithmetic duality. Ann. Sci. École Norm. Sup. (4) 40(4), 519–588 (2007). (With an appendix by Kei...
    • Suslin, A., Voevodsky, V.: Bloch–Kato conjecture and motivic cohomology with finite coefficients. In: The Arithmetic and Geometry of Algebraic...
    • Totaro, B.: Milnor K-theory is the simplest part of algebraic K-theory. K-Theory 6(2), 177–189 (1992).
    • Weibel, C.A.: Homotopy algebraic K-theory. In: Algebraic K-Theory and Algebraic Number Theory (Honolulu, HI, 1987), vol. 83 of Contemporary...
    • Weibel, C.A.: The K-book, vol. 145 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2013). An introduction...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno