Ir al contenido

Documat


The Manin–Peyre conjecture for smooth spherical Fano threefolds

  • Valentin Blomer [2] ; Jörg Brüdern [3] ; Ulrich Derenthal [1] ; Giuliano Gagliardi [1]
    1. [1] University of Hannover

      University of Hannover

      Region Hannover, Alemania

    2. [2] Mathematisches Institut, Universität Bonn, Germany
    3. [3] Mathematisches Institut, Universität Göttingen, Germany
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-61
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00952-4
  • Enlaces
  • Resumen
    • The Manin–Peyre conjecture is established for smooth spherical Fano threefolds of semisimple rank one and type N. Together with the previously solved case T and the toric cases, this covers all types of smooth spherical Fano threefolds. The case N features a number of structural novelties; most notably, one may lose regularity of the ambient toric variety, the height conditions may contain fractional exponents, and it may be necessary to exclude a thin subset with exceptionally many rational points from the count, as otherwise Manin’s conjecture in its original form would turn out to be incorrect.

  • Referencias bibliográficas
    • Arzhantsev, I., Derenthal, U., Hausen, J., Laface, A.: Cox Rings. Cambridge Studies in Advanced Mathematics 144. Cambridge University Press,...
    • Batyrev, V.V., Tschinkel, Y.: Tamagawa numbers of polarized algebraic varieties. Astérisque 251, 299–340 (1998).
    • Blomer, V., Brüdern, J., Derenthal, U., Gagliardi, G.: The Manin–Peyre conjecture for smooth spherical Fano varieties of semisimple rank one....
    • Blomer, V., Brüdern, J., Salberger, P.: On a certain senary cubic form. Proc. Lond. Math. Soc. 108, 911–964 (2014).
    • Bonolis, D., Browning, T.D., Huang, Z.: Density of Rational Points on Some Quadric Bundle Threefolds. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-02854-4.
    • Bravi, P., Pezzini, G.: Primitive wonderful varieties. Math. Z. 282, 1067–1096 (2016).
    • Browning, T.D., Heath-Brown, D.R.: Density of rational points on a quadric bundle in 𝑃 3 × 𝑃 3 P 3 ×P 3 . Duke Math....
    • Colliot-Thélène, J.-L., Sansuc, J.-J.: Torseurs sous des groupes de type multiplicatif; applications à l’étude des points rationnels de certaines...
    • Colliot-Thélène, J.-L., Sansuc, J.-J.: La descente sur les variétés rationnelles II. Duke Math. J. 54(2), 375–492 (1987).
    • Cox, D.: The homogeneous coordinate ring of a toric variety. J. Algebraic Geom. 4(1), 17–50 (1995).
    • Cox, D., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics 124. American Mathematical Society, Providence (2011).
    • Duke, W., Friedlander, J., Iwaniec, H.: Bounds for automorphic L-functions. Invent. Math. 112, 1–8 (1993).
    • Heath-Brown, D.R.: A new form of the circle method, and its application to quadratic forms. J. Reine Angew. Math. 481, 149–206 (1996).
    • Hofscheier, J.: Spherical Fano varieties. Ph.D. thesis, Universität Tübingen (2015).
    • Huang, Z., Montero, P.: Fano threefolds as equivariant compactifications of the vector group. Michigan Math. J. 69(2), 341–368 (2020).
    • Kollár, J., Kovács, S.: Singularities of the Minimal Model Program. Cambridge University Press, Cambridge (2013).
    • Lehmann, B., Sengupta, A., Tanimoto, S.: Geometric consistency of Manin’s conjecture. Compos. Math. 158(6), 1375–1427 (2022).
    • Luna, D.: Variétés sphériques de type A. Publ. Math. Inst. Hautes Études Sci. 161–226 (2001).
    • Luna, D., Vust, Th.: Plongements d’espaces homogènes. Comment. Math. Helv. 58, 186–245 (1983).
    • Peyre, E.: Hauteurs et mesures de Tamagawa sur les variétés de Fano. Duke Math. J. 79, 101–218 (1995).
    • Peyre, E.: Terme principal de la fonction zêta des hauteurs et torseurs universels. Astérisque 251, 259–298 (1998).
    • Peyre, E.: Torseurs universels et méthode du cercle. Progr. Math. 199, Birkhäuser Verlag, Basel, pp. 221–274 (2001).
    • Peyre, E.: Counting points on varieties using universal torsors. Progr. Math. 226, Birkhäuser Boston Inc, Boston, MA, 61–81, p. 2002. Arithmetic...
    • Salberger, P.: Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Astérisque 251 (1998), 91–258. Nombre...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno