Ir al contenido

Documat


Equal rank local theta correspondence as a strong Morita equivalence

  • Bram Mesland [1] ; Mehmet Haluk Sengün [2]
    1. [1] Leiden University

      Leiden University

      Países Bajos

    2. [2] University of Sheffield

      University of Sheffield

      Reino Unido

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-43
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00966-y
  • Enlaces
  • Resumen
    • Let (G, H) be one of the equal rank reductive dual pairs (Mp2n, O2n+1) or (Un, Un) over a nonarchimedean local field of characteristic zero. It is well-known that the theta correspondence establishes a bijection between certain subsets, say G θ and H θ , of the tempered duals of G and H. We prove that this bijection arises from an equivalence between the categories of representations of two C∗-algebras whose spectra are G θ and H θ . This equivalence is implemented by the induction functor associated to a Morita equivalence bimodule (in the sense of Rieffel) which we construct using the oscillator representation. As an immediate corollary, we deduce that the bijection is functorial and continuous with respect to weak inclusion. We derive further consequences regarding the transfer of characters and preservation of formal degrees

  • Referencias bibliográficas
    • An Huef, A., Raeburn, I., Williams, D.: Properties preserved under Morita equivalence of C∗-algebras. Proc. Am. Math. Soc. 135(5), 1495–1503...
    • Beuzart-Plessis, R.: A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the Archimedean case. Astérisque No. 418...
    • Blackadar, B.: Operator algebras. Theory of C∗-algebras and von Neumann algebras. Encyclopaedia of Mathematical Sciences, 122. Operator Algebras...
    • Brodzki, J., Plymen, R.: Chern character for the Schwartz algebra of p-adic GL(n). Bull. Lond. Math. Soc. 34(2), 219–228 (2002)
    • Combes, F., Zettl, H.: Order structures, traces and weights on Morita equivalent C∗-algebras. Math. Ann. 265(1), 67–81 (1983)
    • Dixmier, J.: C∗-algebras. Translated from the French by Francis Jellett. North-Holland Mathematical Library, Vol. 15. North-Holland Publishing...
    • Fell, J. M. G.: Weak containment and induced representations of groups. II. Trans. Amer. Math. Soc. 110 (1964), 424–447. Pure and Applied...
    • Gan, W.T., Savin, G.: Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence. Compos. Math. 148(6),...
    • Gan, W.T., Ichino, A.: Formal degrees and local theta correspondence. Invent. Math. 195(3), 509–672 (2014)
    • Gan, W.T., Takeda, S.: A proof of the Howe duality conjecture. J. Am. Math. Soc. 29(2), 473–493 (2016)
    • Gan, W.T., Takeda, S.: On the Howe duality conjecture in classical theta correspondence. Advances in the theory of automorphic forms and their...
    • Gan, W.T.: Video of the talk on 15 July 2020 at the talk on at the “WIS Representation theory and Algebraic Geometry” online seminar. https://www.youtube.com/watch?v=qyl-oqBMm8E
    • Gan, W.T.: Video of a talk given in May 2021 at the conference “Relative Aspects of the Langlands Program, L-Functions and Beyond Endoscopy"...
    • Gan,W.T.: Video of the first talk in a series of talks given in July 2022 at the conference “Representations and Characters: Revisiting the...
    • Gelbart, S.: On theta-series liftings for unitary groups. In: Theta functions: from the classical to the modern, 129–174, CRM Proc. Lecture...
    • Harish-Chandra: Harmonic analysis on reductive p-adic groups. In: Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol....
    • Harris, M., Li, J.-S., Sun, B.: Theta correspondences for close unitary groups. In: Arithmetic geometry and automorphic forms, 265–307, Adv....
    • Hochs, P., Wang, H.: A fixed point formula and Harish-Chandra’s character formula. Proc. Lond. Math. Soc. 116(1), 1–32 (2018)
    • Howe, R.: θ-series and invariant theory, in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ.,...
    • Howe, R.: Transcending classical invariant theory. J. Am. Math. Soc. 2, 535–552 (1989)
    • Ichino, A.: Theta lifting for tempered representations of real unitary groups. Adv. Math. 398, 108188 (2022)
    • Lafforgue, V.: Banach KK-theory and the Baum-Connes conjecture. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing,...
    • Lance, E.C.: Hilbert C∗-modules- A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, 210. Cambridge University...
    • Landsman, N.P.: Rieffel induction as generalized quantum Marsden-Weinstein reduction. J. Geom. Phys. 15(4), 285–319 (1995)
    • Li, J.-S.: Singular unitary representations of classical groups. Invent. Math. 97(2), 237–255 (1989)
    • Li, W.-W.: La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale. Ann. Sci. Ec. Norm. Supér....
    • Loke, H. Y., Przebinda, T.: The character correspondence in the stable range over a p-adic field.arXiv:2207.07298
    • Merino, A.: Transfer of characters in the theta correspondence with one compact member. J. Lie Theory 30(4), 997–1026 (2020)
    • Phillips, N.C.: K-theory for Fréchet algebras. Int. J. Math. 2(1), 77–129 (1991)
    • Pierrot, F.: K-théorie et multiplicités dans L²(G/). Mém. Soc. Math. Fr. (N.S.) No. 89 (2002)
    • Prasad, D.: Video of a talk given in April 2022 at the conference “Minimal Representations and Theta Correspondence" at ESI. https://www.youtube.com/watch?v=ZG_kj6D7XRs
    • Przebinda, T.: Characters, dual pairs, and unipotent representations. J. Funct. Anal. 98(1), 59–96 (1991)
    • Przebinda, T.: A Cauchy Harish-Chandra integral, for a real reductive dual pair. Invent. Math. 141(2), 29–363 (2000)
    • Raeburn, I., Williams, D.P.: Morita equivalence and continuous trace C∗-algebras, AMS Mathematical Surveys and Monographs 60 (1998)
    • Rieffel, M.A.: Commutation theorems and generalized commutation relations. Bull. Soc. Math. France 104(2), 205–224 (1976)
    • Rieffel, M.A.: C∗-algebras associated with irrational rotations. Pacific J. Math. 93(2), 415–429 (1981)
    • Rieffel, M.A.: Projective modules over higher-dimensional noncommutative tori. Can. J. Math. 40(2), 257–338 (1988)
    • Sakellaridis, Y.: Plancherel decomposition of Howe duality and Euler factorization of automorphic functionals. In: Representation theory,...
    • Schweitzer, L.B.: A short proof that Mₙ(A) is local if A is local and Fréchet. Int. J. Math. 3(4), 581–589 (1992)
    • Solleveld, M.: On the Baum-Connes conjecture with coefficients for linear algebraic groups. https://arxiv.org/pdf/1901.08807v2.pdf
    • Valette, A.: Minimal projections, integrable representations and property (T). Arch. Math. (Basel) 43(5), 397–406 (1984)
    • Vignéras, M.-F.: On formal dimensions for reductive p-adic groups. In: Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of...
    • Waldspurger, J.-L.: Demonstration d’une conjecture de dualité de Howe dans le cas p-adique, p = 2. In: Festschrift in honor of I. I. Piatetski-Shapiro...
    • Waldspurger, J.-L.: La formule de Plancherel pour les groupes p-adiques (d’aprés Harish-Chandra). J. Inst. Math. Jussieu 2(2), 235–333 (2003)
    • Zettl, H.H.: Ideals in Hilbert modules and invariants under strong Morita equivalence of C∗-algebras. Arch. Math. (Basel) 39(1), 69–77 (1982)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno