Ir al contenido

Documat


Stable envelopes for slices of the affine Grassmannian

  • Ivan Danilenko [1]
    1. [1] University of California System

      University of California System

      Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-77
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00953-3
  • Enlaces
  • Resumen
    • The affine Grassmannian associated to a reductive group G is an affine analogue of the usual flag varieties. It is a rich source of Poisson varieties and their symplectic resolutions. These spaces are examples of conical symplectic resolutions dual to the Nakajima quiver varieties. We study the cohomological stable envelopes of Maulik and Okounkov (Astérisque 408:ix+209, 2019) in this family. We construct an explicit recursive relation for the stable envelopes in the G = PSL2 case and compute the first-order correction in the general case. This allows us to write an exact formula for multiplication by a divisor.

  • Referencias bibliográficas
    • Atiyah, M.F., Bott, R.: The moment map and equivariant cohomology. Topology 23(1), 1–28 (1984)
    • Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. In: Analysis and Topology on Singular Spaces, I (Luminy, 1981), pp. 5–171...
    • Borel, A.: Linear Algebraic Groups. Graduate Texts in Mathematics, vol. 126, 2nd edn. Springer-Verlag, New York (1991)
    • Brion, M.: Poincaré duality and equivariant (co)homology. Mich. Math. J. 48(1), 77–92 (2000)
    • Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s integrable system and Hecke eigensheaves (1991)
    • Braverman, A., Finkelberg, M.: Pursuing the double affine Grassmannian, I: transversal slices via instantons on Ak-singularities. Duke Math....
    • Braverman, A., Finkelberg, M., Nakajima, H.: Towards a mathematical definition of Coulomb branches of 3-dimensional N = 4 gauge theories,...
    • Braverman, A., Finkelberg, M., Nakajima, H.: Coulomb branches of 3D N = 4 quiver gauge theories and slices in the affine Grassmannian....
    • Bezrukavnikov, R., Kaledin, D.: McKay equivalence for symplectic resolutions of quotient singularities. Tr. Mat. Inst. Steklova 246, 20–42...
    • Bernstein, J., Lunts, V.: Equivariant Sheaves and Functors. Lecture Notes in Mathematics, vol. 1578. Springer, Berlin (1994)
    • Chriss, N., Ginzburg, V.: Representation theory and complex geometry. In: Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston (2010)....
    • Cautis, S., Kamnitzer, J.: Knot homology via derived categories of coherent sheaves I. The sl(2)-case. Duke Math. J. 142(3), 511–588 (2008)
    • Danilenko, I.: Quantum differential equation for slices of the affine Grassmannian, arXiv preprint arXiv:2210.17061 (2022)
    • Drinfeld, V. G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), vol. 1, no. 2,...
    • Drinfeld, V.G.: On Poisson homogeneous spaces of Poisson-Lie groups. Teoret. Mat. Fiz. 95(2), 226–227 (1993)
    • Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. Mat. Sbornik N.S. 30(72), 349–462 (1952). ((3 plates))
    • Fulton, W., Harris, J.: Representation theory: a first course. In: Readings in Mathematics, 1st edn, vol. 129. Springer, New York (1991)
    • Ginzburg, V.A.: Sheaves on a loop group, and Langlands duality. Funktsional. Anal. i Prilozhen. 24(4), 76–77 (1990)
    • Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131(1), 25–83...
    • Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19(2), 135–162 (1980)
    • Goresky, M., MacPherson, R.: Intersection homology. II. Invent. Math. 72(1), 77–129 (1983)
    • Ginzburg, V., Riche, S.: Differential operators on G/U and the affine Grassmannian. J. Inst. Math. Jussieu 14(3), 493–575 (2015)
    • Hsiang, W.Y.: Cohomology Theory of Topological Transformation Groups, vol. 85. Springer, Berlin (1975)
    • Iversen, B.: A fixed point formula for action of tori on algebraic varieties. Inventiones Mathematicae 16(3), 229–236 (1972)
    • Intriligator, K., Seiberg, N.: Mirror symmetry in three-dimensional gauge theories. Phys. Lett. B 387(3), 513–519 (1996)
    • Kaledin, D.: Geometry and topology of symplectic resolutions. Algebr. Geom. Seattle 2005 Part 2 80, 595–628 (2009)
    • Kaledin, D.: Symplectic resolutions: deformations and birational maps, arXiv preprint (2000)
    • Kumar, S., Narasimhan, M.S., Ramanathan, A.: Infinite Grassmannians and moduli spaces of G-bundles. Math. Ann. 300(1), 41–75 (1994)
    • Kamnitzer, J., Webster, B., Weekes, A., Yacobi, O.: Yangians and quantizations of slices in the affine Grassmannian. Algebra Number Theory...
    • Maulik, D., Okounkov, A.: Quantum groups and quantum cohomology. Astérisque 408, ix+209 (2019)
    • Mirkovi´c, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. (2) 166(1),...
    • Mirkovi´c, I., Vilonen, K.: Erratum for “Geometric Langlands duality and representations of algebraic groups over commutative rings”. Ann....
    • Mirkovi´c, I., Vybornov, M.: On quiver varieties and affine Grassmannians of type A. C. R. Math. Acad. Sci. Paris 336(3), 207–212 (2003)
    • Nakajima, H.: Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math. J. 76(2), 365–416 (1994)
    • Nakajima, H.: Heisenberg algebra and Hilbert schemes of points on projective surfaces. Ann. Math. (2) 145(2), 379–388 (1997)
    • Nakajima, H.: Quiver varieties and Kac-Moody algebras. Duke Math. J. 91(3), 515–560 (1998)
    • Su, C.: Stable basis and quantum cohomology of cotangent bundles of flag varieties, Ph.D. Thesis, (2017)
    • Seiberg, N., Witten, E.: Gauge dynamics and compactification to three dimensions. In: The Mathematical Beauty of Physics (Saclay, 1996), pp....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno