Ir al contenido

Documat


Divisors and curves on logarithmic mapping spaces

  • Patrick Kennedy-Hunt [1] ; Navid Nabijou [2] ; Qaasim Shafi [3] ; Wanlong Zheng [1]
    1. [1] University of Cambridge

      University of Cambridge

      Cambridge District, Reino Unido

    2. [2] Queen Mary University of London

      Queen Mary University of London

      Reino Unido

    3. [3] University of Birmingham

      University of Birmingham

      Reino Unido

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-30
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00956-0
  • Enlaces
  • Resumen
    • We determine the rational class and Picard groups of the moduli space of stable logarithmic maps in genus zero, with target projective space relative a hyperplane.

      For the class group we exhibit an explicit basis consisting of boundary divisors. For the Picard group we exhibit a spanning set indexed by piecewise-linear functions on the tropicalisation. In both cases a complete set of boundary relations is obtained by pulling back the WDVV relations from the space of stable curves. Our proofs hinge on a controlled technique for manufacturing test curves in logarithmic mapping spaces, opening up the topology of these spaces to further study.

  • Referencias bibliográficas
    • Abramovich, D., Chen, Q.: Stable logarithmic maps to Deligne–Faltings pairs II. Asian J. Math. 18(3), 465–488 (2014)
    • Abramovich, D., Chen, Q., Gross, M., Siebert, B.: Decomposition of degenerate Gromov–Witten invariants. Compos. Math. 156(10), 2020–2075 (2020)
    • Abramovich, D., Caporaso, L., Payne, S.: The tropicalization of the moduli space of curves. Ann. Sci. Éc. Norm. Supér. (4) 48(4), 765–809...
    • Abramovich, D., Karu, K.: Weak semistable reduction in characteristic 0. Invent. Math. 139(2), 241–273 (2000)
    • Ascher, K., Molcho, S.: Logarithmic stable toric varieties and their moduli. Algebr. Geom. 3(3), 296–319 (2016)
    • Abramovich, D., Marcus, S., Wise, J.: Comparison theorems for Gromov–Witten invariants of smooth pairs and of degenerations. Ann. Inst. Fourier...
    • Abramovich, D., Wise, J.: Birational invariance in logarithmic Gromov–Witten theory. Compos. Math. 154(3), 595–620 (2018)
    • Brandt, M., Bruce, J., Chan, M., Melo, M., Moreland, G., Wolfe, C.: On the top-weight rational cohomology of Ag. Geom. Topol. arXiv:2012.02892...
    • Brandt, M., Chan, M., Kannan, S.: On the weight zero compactly supported cohomology of Hg,n. arXiv:2307.01819 (2023)
    • Battistella, L., Nabijou, N., Ranganathan, D.: Gromov-Witten theory via roots and logarithms. Geom. Topol. arXiv:2203.17224 (2022) (to appear)
    • Bae, Y., Schmitt, J.: Chow rings of stacks of prestable curves I. Forum Math. Sigma 10, e28 (2022)
    • Bae, Y., Schmitt, J.: Chow rings of stacks of prestable curves II. J. Reine Angew. Math. 800, 55–106 (2023)
    • Caporaso, L.: Gonality of algebraic curves and graphs. Algebraic and Complex Geometry Volume 71 of Springer Proceedings of the Mathematics...
    • Cavalieri, R., Chan, M., Ulirsch, M., Wise, J.: A moduli stack of tropical curves. Forum Math. Sigma 8, e23, 93 (2020)
    • Chen, Q.: Stable logarithmic maps to Deligne–Faltings pairs I. Ann. Math. (2) 180(2), 455–521 (2014)
    • Cavalieri, R., Hampe, S., Markwig, H., Ranganathan, D.: Moduli spaces of rational weighted stable curves and tropical geometry. Forum Math....
    • Cavalieri, R., Markwig, H., Ranganathan, D.: Tropicalizing the space of admissible covers. Math. Ann. 364(3–4), 1275–1313 (2016)
    • Carocci, F., Nabijou, N.: Tropical expansions and toric variety bundles. arXiv:2207.12541 (2022)
    • Choi, J., van Garrel, M., Katz, S., Takahashi, N.: Sheaves of maximal intersection and multiplicities of stable log maps. Sel. Math. (N.S.),...
    • Fulton, W.: Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics...
    • Gathmann, A.: Absolute and relative Gromov–Witten invariants of very ample hypersurfaces. Duke Math. J. 115(2), 171–203 (2002)
    • Gross, A.: Correspondence theorems via tropicalizations of moduli spaces. Commun. Contemp. Math. 18(3), 1550043, 36 (2016)
    • Gross, M., Siebert, B.: Logarithmic Gromov–Witten invariants. J. Am. Math. Soc. 26(2), 451–510 (2013)
    • Görtz, U., Wedhorn, T.: Algebraic geometry I. Advanced Lectures in Mathematics. Vieweg + Teubner, Wiesbaden (2010)
    • Hartshorne, R.: Algebraic Geometry. Springer, New York, Heidelberg (1977). Graduate Texts in Mathematics, No. 52
    • Kannan, S.: Moduli of relative stable maps to P¹: cut-and-paste invariants. Sel. Math. (N.S.) 29(4), Paper No. 54, 26 (2023)
    • Keel, S.: Intersection theory of moduli space of stable n-pointed curves of genus zero. Trans. Am. Math. Soc. 330(2), 545–574 (1992)
    • Kennedy-Hunt, P.: The Logarithmic Quot space: foundations and tropicalisation. arXiv:2308.14470 (2023)
    • Kempf, G., Knudsen, F.F., Mumford, D., Saint-Donat, B.: Toroidal embeddings. I. Lecture Notes in Mathematics, Vol. 339. Springer, Berlin,...
    • Katz, E., Payne, S.: Piecewise polynomials, Minkowski weights, and localization on toric varieties. Algebra Number Theory 2(2), 135–155 (2008)
    • Len, Y., Ulirsch, M.: Skeletons of Prym varieties and Brill–Noether theory. Algebra Number Theory 15(3), 785–820 (2021)
    • Melo, M., Molcho, S., Ulirsch, M., Viviani, F.: Tropicalization of the universal Jacobian. Épijournal Géom. Algébrique, 6 . 15, 51 (2022)
    • Maulik, D., Ranganathan, D.: Logarithmic Donaldson–Thomas theory. arXiv:2006.06603 (2020). Forum Math. Pi. (to appear)
    • Molcho, S., Wise, J.: The logarithmic Picard group and its tropicalization. Compos. Math. 158(7), 1477–1562 (2022)
    • Nabijou, N.: Toric configuration spaces: the bipermutahedron and beyond. arXiv:2306.03215 (2023)
    • Olsson, M.: Logarithmic geometry and algebraic stacks. Ann. Sci. École Norm. Sup. (4) 36(5), 747–791 (2003)
    • Odaka, Y., Oshima, Y.: Collapsing K3 surfaces, tropical geometry and moduli compactifications of Satake, Morgan-Shalen type. MSJ Memoirs,...
    • Oprea, D.: Divisors on the moduli spaces of stable maps to flag varieties and reconstruction. J. Reine Angew. Math. 586, 169–205 (2005)
    • Pandharipande, R.: Intersections of Q-divisors on Kontsevich’s moduli space M₀,n(Pʳ, d) and enumerative geometry. Trans. Am. Math. Soc. 351(4),...
    • Ranganathan, D.: Skeletons of stable maps I: rational curves in toric varieties. J. Lond. Math. Soc. (2) 95(3), 804–832 (2017)
    • Tarasca, N.: Brill–Noether loci in codimension two. Compos. Math. 149(9), 1535–1568 (2013)
    • Tarasca, N.: Double total ramifications for curves of genus 2. Int. Math. Res. Not. IMRN 19, 9569–9593 (2015)
    • Totaro, B.: Chow groups, Chow cohomology, and linear varieties. Forum Math. Sigma, 2 No. e17, 25 (2014)
    • Ulirsch, M.: Tropical geometry of moduli spaces of weighted stable curves. J. Lond. Math. Soc. (2) 92(2), 427–450 (2015)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno