Ir al contenido

Documat


The (almost) integral Chow ring of $\widetilde{\mathcal{M}}_3^7

  • Michele Pernice [1]
    1. [1] KTH, Stockholm, Sweden
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-40
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00964-0
  • Enlaces
  • Resumen
    • This paper is the third in a series of four papers aiming to describe the (almost integral) Chow ring of M3, the moduli stack of stable curves of genus 3. In this paper, we compute the Chow ring of M7 3 with Z[1/6]-coefficients.

  • Referencias bibliográficas
    • Abramovich, D., Olsson, M., Vistoli, A.: Twisted stable maps to tame Artin stacks. J. Algebr. Geom. 20, 399–477 (2011)
    • Arsie, A., Vistoli, A.: Stacks of cyclic covers of projective spaces. Compos. Math. 140(3), 647–666 (2004)
    • Catanese, F.: Pluricanonical gorenstein curves. Enumer. Geom. Class, Algebraic Geom. (1982)
    • Canning, S., Larson, H.: The Chow rings of the moduli spaces of curves of genus 7, 8, and 9. arXiv:2104.05820 (2021)
    • Di Lorenzo, A.: The Chow ring of the stack of hyperelliptic curves of odd genus. Int. Math. Res. Not. IMRN (2019). https://doi.org/10.1093/irmn/rnz101
    • Di Lorenzo, A.: Picard group of moduli of curves of low genus in positive characteristic. Manuscr. Math. 165(3), 339–361 (2020)
    • Di Lorenzo, A., Fulghesu, D., Vistoli, A.: The integral Chow ring of the stack of smooth nonhyperelliptic curves of genus three. Trans. Am....
    • Di Lorenzo, A., Pernice, M., Vistoli, A.: Stable cuspidal curves and the integral Chow ring of M2,1. arXiv:2108.03680 (2021)
    • Di Lorenzo, A., Vistoli, A.: Polarized twisted conics and moduli of stable curves of genus two. arXiv:2103.13204 (2021)
    • Edidin, D., Fulghesu, D.: The integral Chow ring of the stack of at most 1-nodal rational curves (2006)
    • Edidin, D., Graham, W.: Equivariant intersection theory. Invent. Math. 131, 595–634 (1998)
    • Esteves, E.: The stable hyperelliptic locus in genus 3: an application of Porteous Formula. J. Pure Appl. Algebra 220, 845–856 (2013)
    • Faber, C.: Chow rings of moduli spaces of curves I: the Chow ring of M3. Ann. Math. 132, 331–419 (1990)
    • Fulghesu, D., Vistoli, A.: The Chow ring of the stack of smooth plane cubics. Mich. Math. J. 67, 3–29 (2016)
    • Izadi, E.: The Chow Ring of the Moduli Space of Curves of Genus 5. 267–303 (1995)
    • Larson, E.: The integral Chow ring of M2. arXiv:1904.08081 (2019)
    • Molina Rojas, L.A., Vistoli, A.: On the Chow rings of classifying spaces for classical groups. Rendiconti del Seminario Matematico della Università...
    • Mumford, D.: Towards an enumerative geometry of the moduli space of curves. In: Artin, M., Tate, J. (eds.) Arithmetic and Geometry. Progress...
    • Pernice, M.: Hyperelliptic ar-stable curves (and their moduli stack). arXiv:2302.11456 (2023)
    • Pernice, M.: The moduli stack of ar-stable curves. arXiv:2302.10877 (2023)
    • Penev, N., Vakil, R.: The Chow ring of the moduli space of curves of genus 6. Algebr. Geom. 2 (2013)
    • Totaro, B.: Group Cohomology and Algebraic Cycles. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2014)
    • Vistoli, A.: Intersection theory on algebraic stacks and on their moduli spaces. Invent. Math. 97(3), 613–670 (1989)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno