Ir al contenido

Documat


The Morrison–Kawamata cone conjecture for singular symplectic varieties

  • Christian Lehn [3] ; Giovanni Mongardi [1] ; Gianluca Pacienza [2]
    1. [1] University of Bologna

      University of Bologna

      Bolonia, Italia

    2. [2] University of Lorraine

      University of Lorraine

      Arrondissement de Nancy, Francia

    3. [3] Fakultät für Mathematik, Ruhr–Universität Bochum, Germany
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-36
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00969-9
  • Enlaces
  • Resumen
    • We prove the Morrison–Kawamata cone conjecture for projective primitive symplectic varieties with Q-factorial and terminal singularities with b2 ≥ 5, from which we derive for instance the finiteness of minimal models of such varieties, up to isomorphisms. To prove the conjecture we establish along the way some results on the monodromy group which may be interesting in their own right, such as the fact that reflections in prime exceptional divisors are integral Hodge monodromy operators which, together with monodromy operators provided by birational transformations, yield a semidirect product decomposition of the monodromy group of Hodge isometries.

  • Referencias bibliográficas
    • Amerik, E., Verbitsky, M.: Rational curves on hyperkähler manifolds. Int. Math. Res. Not. IMRN 23, 13009–13045 (2015)
    • Amerik, E., Verbitsky, M.: Morrison-Kawamata cone conjecture for hyperkähler manifolds. Ann. Sci. Éc. Norm. Supér. 4(50), 973–993 (2017)
    • Amerik, E., Verbitsky, M.: Collections of orbits of hyperplane type in homogeneous spaces, homogeneous dynamics, and hyperkähler geometry....
    • Amerik, E., Verbitsky, M.: Contraction centers in families of hyperkähler manifolds. Selecta Math. 27(4), 26 (2021)
    • Boucksom, S., Broustet, A., Pacienza, G.: Uniruledness of stable base loci of adjoint linear systems via Mori theory. Math. Zeitschrift 275(1–2),...
    • Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23(2),...
    • Beauville, A.: Symplectic singularities. Invent. Math. 139(3), 541–549 (2000)
    • Bakker, B., Guenancia, H., Lehn, C.: Algebraic approximation and the decomposition theorem for Kähler Calabi-Yau varieties. Invent. Math....
    • Barth, Wolf P., Hulek, Klaus, Peters, Chris A. M., Ven, Antonius Van de: Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und...
    • Bakker, B., Lehn, C.: The global moduli theory of symplectic varieties. Preprint, to appear in J. Reine Angew. Math., published online, https://doi.org/10.1515/crelle-2022-0033....
    • Bakker, B., Lehn, C.: A global Torelli theorem for singular symplectic varieties. J. Eur. Math. Soc. (JEMS) 23(3), 949–994 (2021)
    • Boucksom, S.: Divisorial Zariski decompositions on compact complex manifolds. Ann. Sci. École Norm. Sup. (4) 37(1), 45–76 (2004)
    • Druel, S., Guenancia, H.: A decomposition theorem for smoothable varieties with trivial canonical class. J. Éc. polytech. Math. 5, 117–147...
    • Douady, A.: Le problème des modules locaux pour les espaces C-analytiques compacts. Ann. Sci. École Norm. Sup. 7(569–602), 1994 (1995)
    • Druel, S.: Quelques remarques sur la décomposition de Zariski divisorielle sur les variétés dont la première classe de Chern est nulle. Math....
    • Druel, S.: A decomposition theorem for singular spaces with trivial canonical class of dimension at most five. Invent. Math. 211(1), 245–296...
    • Elkik, R.: Rationalité des singularités canoniques. Invent. Math. 64(1), 1–6 (1981)
    • Flenner, H., Kosarew, S.: On locally trivial deformations. Publ. Res. Inst. Math. Sci. 23(4), 627–665 (1987)
    • Greb, D., Guenancia, H., Kebekus, S.: Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups. Geom....
    • Gross, M., Huybrechts, D., Joyce, D.: Calabi-Yau manifolds and related geometries. Universitext. Springer-Verlag, Berlin, 2003. Lectures from...
    • Greb, D., Kebekus, S., Kovács, S.J., Peternell, T.: Differential forms on log canonical spaces. Publ. Math. Inst. Hautes Études Sci. 114,...
    • Grauert, H.: Der Satz von Kuranishi für kompakte komplexe Räume. Invent. Math. 25, 107–142 (1974)
    • Höring, A., Peternell, T.: Algebraic integrability of foliations with numerically trivial canonical bundle. Invent. Math. 216(2), 395–419...
    • Huybrechts, D.: Compact hyper-Kähler manifolds: basic results. Invent. Math. 135(1), 63–113 (1999)
    • Huybrechts, D.: The Kähler cone of a compact hyperkähler manifold. Math. Ann. 326(3), 499–513 (2003)
    • Kaledin, D.: On the coordinate ring of a projective Poisson scheme. Math. Res. Lett. 13(1), 99–107 (2006)
    • Kawamata, Y.: Pluricanonical systems on minimal algebraic varieties. Invent. Math. 79(3), 567–588 (1985)
    • Kawamata, Y.: On the cone of divisors of Calabi-Yau fiber spaces. Int. J. Math. 8(5), 665–687 (1997)
    • Kollár, J., Mori, S.: Classification of three-dimensional flips. J. Amer. Math. Soc. 5(3), 533–703 (1992)
    • Kollár, J., Mori, Shigefumi: Birational geometry of algebraic varieties. Cambridge University Press, Cambridge (1998)
    • Kapustka, M., Mongardi, G., Pacienza, G., Pokora, P.: On the Boucksom-Zariski decomposition for irreducible symplectic varieties and bounded...
    • Kebekus, S., Schnell, C.: Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities. J. Amer....
    • Lehn, C., Mongardi, G., Pacienza, G.: Deformations of rational curves on primitive symplectic varieties and applications. Preprint arXiv:2103.16356,...
    • Lojasiewicz, S.: Triangulation of semi-analytic sets. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 18, 449–474 (1964)
    • Looijenga, E.: Discrete automorphism groups of convex cones of finite type. Compositio Math. 150(11), 1939–1962 (2014)
    • Lazić, V., Oguiso, K., Peternell, T.: The Morrison-Kawamata cone conjecture and abundance on Ricci flat manifolds. In Uniformization, Riemann-Hilbert...
    • Markman, E.: Modular Galois covers associated to symplectic resolutions of singularities. J. Reine Angew. Math. 644, 189–220 (2010)
    • Markman, E.: A survey of Torelli and monodromy results for holomorphic-symplectic varieties. In Complex and differential geometry, volume...
    • Markman, E.: Prime exceptional divisors on holomorphic symplectic varieties and monodromy reflections. Kyoto J. Math. 53(2), 345–403 (2013)
    • Mongardi, G.: A note on the Kähler and Mori cones of hyperkähler manifolds. Asian J. Math. 19(4), 583–591 (2015)
    • Morrison, D. R.: Compactifications of moduli spaces inspired by mirror symmetry. Astérisque, (218):243–271. Journées de Géométrie Algébrique...
    • Morrison, D. R.: Beyond the Kähler cone. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), volume 9...
    • Markman, E., Yoshioka, K.: A proof of the Kawamata-Morrison cone conjecture for holomorphic symplectic varieties of K3[n] or generalized Kummer...
    • Namikawa, Y.: Periods of Enriques surfaces. Math. Ann. 270, 201–222 (1985)
    • Namikawa, Y.: Deformation theory of singular symplectic n-folds. Math. Ann. 319(3), 597–623 (2001)
    • Namikawa, Y.: A note on symplectic singularities. Preprint (2001). arXiv /0101028
    • Namikawa, Y.: Projectivity criterion of Moishezon spaces and density of projective symplectic varieties. Internat. J. Math. 13(2), 125–135...
    • Namikawa, Y.: On deformations of Q-factorial symplectic varieties. J. Reine Angew. Math. 599, 97–110 (2006)
    • Namikawa, Y.: Flops and Poisson deformations of symplectic varieties. Publ. Res. Inst. Math. Sci. 44(2), 259–314 (2008)
    • Namikawa, Y.: Poisson deformations of affine symplectic varieties, ii. Kyoto J. Math. 50, 727–752 (2010)
    • Namikawa, Y.: Poisson deformations of affine symplectic varieties. Duke Math. J. 156(1), 51–85 (2011)
    • Oguiso, K.: On the finiteness of fiber-space structures on a Calabi-Yau 3-fold. Volume 106, pages 3320–3335. Algebraic geometry, 11 (2001)
    • Oguiso, K.: Automorphism groups of Calabi-Yau manifolds of Picard number 2. J. Algebr. Geom. 23(4), 775–795 (2014)
    • Perego, A., Rapagnetta, A.: The moduli spaces of sheaves on K3 surfaces are irreducible symplectic varieties. arXiv preprint (2018). arXiv:1802.01182
    • Prendergast-Smith, A.: The cone conjecture for abelian varieties. J. Math. Sci. Tokyo 19(2), 243–261 (2012)
    • Reid, M.: Minimal models of canonical 3-folds. In: Algebraic varieties and analytic varieties (Tokyo, 1981), volume 1 of Adv. Stud. Pure Math.,...
    • Sawon, J.: Abelian fibred holomorphic symplectic manifolds. Turkish J. Math. 27(1), 197–230 (2003)
    • Schwald, M.: Fujiki relations and fibrations of irreducible symplectic varieties. Épijournal Géom. Algébrique 4, 19 (2020)
    • Schwald, M.: On the definition of irreducible holomorphic symplectic manifolds and their singular analogs. Int. Math. Res. Notices 15, 11864...
    • Slodowy, P.: Simple singularities and simple algebraic groups. In: Lecture Notes in Mathematics, vol. 815. Springer, Berlin (1980)
    • Sterk, H.: Finiteness results for algebraic K3 surfaces. Math. Z. 189(4), 507–513 (1985)
    • Szendrői, B.: Some finiteness results for Calabi-Yau threefolds. J. London Math. Soc. (2) 60(3), 689–699 (1999)
    • Totaro, B.: The cone conjecture for Calabi-Yau pairs in dimension 2. Duke Math. J. 154(2), 241–263 (2010)
    • Totaro, B.: Algebraic surfaces and hyperbolic geometry. In: Current developments in algebraic geometry. Selected papers based on the presentations...
    • Uehara, H.: Calabi-Yau threefolds with infinitely many divisorial contractions. J. Math. Kyoto Univ. 44(1), 99–118 (2004)
    • Vinberg, Ernest B., Shvartsman, Osip V.: Discrete groups of motions of spaces of constant curvature. In Geometry II, pages 139–248. Springer...
    • Wilson, P.M.H.: Minimal models of Calabi-Yau threefolds. In Classification of algebraic varieties (L’Aquila, 1992), volume 162 of Contemp....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno