Ir al contenido

Documat


Tomographic Fourier extension identities for submanifolds of ℝⁿ.

  • Jonathan Bennett [1] ; Shohei Nakamura [2] ; Shobu Shiraki [3]
    1. [1] University of Birmingham

      University of Birmingham

      Reino Unido

    2. [2] Osaka University

      Osaka University

      Kita Ku, Japón

    3. [3] Saitama University

      Saitama University

      Minuma-ku, Japón

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-14
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00970-2
  • Enlaces
  • Referencias bibliográficas
    • Alonso, M.A.: Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles. Adv. Opt. Photon. 3(4), 272–365...
    • Barceló, J.A., Bennett, J., Carbery, A.: A note on localised weighted estimates for the extension operator. J. Aust. Math. Soc. 84, 289–299...
    • Barceló, J.A., Ruiz, A., Vega, L.: Weighted estimates for the Helmholtz equation and consequences. J. Funct. Anal. 150, 356–382 (1997)
    • Barthe, F.: On a reverse form of the Brascamp–Lieb inequality. Invent. Math. 134, 355–361 (1998)
    • Beltran, D., Vega, L.: Bilinear identities involving the k-plane transform and Fourier extension operators. Proc. R. Soc. Edinb. Sect. A 150,...
    • Bennett, J.: Aspects of multilinear harmonic analysis related to transversality. Harmonic Analysis and Partial Differential Equations, 1–28,...
    • Bennett, J., Bez, N.: Higher order transversality in harmonic analysis. RIMS Kôkyûroku Bessatsu B 88, 75–103 (2021)
    • Bennett, J., Bez, N., Flock, T.C., Gutiérrez, S., Iliopoulou, M.: A sharp k-plane Strichartz estimate for the Schrödinger equation. Trans....
    • Bennett, J., Bez, N., Flock, T.C., Lee, S.: Stability of the Brascamp–Lieb constant and applications to harmonic analysis. Am. J. Math. 140,...
    • Bennett, J., Carbery, A., Soria, F., Vargas, A.: A Stein conjecture for the circle. Math. Ann. 336, 671–695 (2006)
    • Bennett, J., Carbery, A., Tao, T.: On the multilinear restriction and Kakeya conjectures. Acta Math. 196, 261–302 (2006)
    • Bennett, J., Gutierrez, S., Nakamura, S., Oliveira, I.: A phase-space approach to weighted Fourier extension inequalities. arXiv:2406.14886
    • Bennett, J., Iliopoulou, M.: A multilinear extension identity on ℝⁿ. Math. Res. Lett. 25, 1089–1108 (2018)
    • Bennett, J., Nakamura, S.: Tomography bounds for the Fourier extension operator and applications. Math. Ann. 380, 119–159 (2021)
    • Carbery, A., Iliopoulou, M., Wang, H.: To appear in Rev. Mat. Iberoam.
    • Guo, S., Wang, H., Zhang, R.: A dichotomy for Hörmander-type oscillatory integral operators. arXiv:2210.05851
    • Planchon, F., Vega, L.: Bilinear virial identities and applications. Ann. Sci. Éc. Norm. Sup. 42, 263–292 (2009)
    • Stein, E.M.: Some problems in harmonic analysis. Proc. Symp. Pure Appl. Math. 35, Part I, 3–20 (1979)
    • Stovall, B.: Waves, spheres, and tubes: a selection of Fourier restriction problems, methods, and applications. Not. Am. Math. Soc. 66, 1013–1022...
    • Vega, L.: Bilinear virial identities and oscillatory integrals. Harmonic Analysis and Partial Differential Equations, 219–232, Contemp. Math.,...
    • Zhang, R.: The endpoint perturbed Brascamp–Lieb inequalities with examples. Anal. PDE 11, 555–581 (2018)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno