Ir al conteni
d
o
B
uscar
R
evistas
T
esis
Libr
o
antiguo
Co
n
gresos
A
u
tores
Ayuda
Cambiar idioma
Idioma
català
Deutsch
English
español
euskara
français
galego
italiano
português
română
Cambiar
Multiplicative structures and random walks in o-minimal groups
Hunter Spink
[1]
[1]
Stanford University
Stanford University
Estados Unidos
Localización:
Selecta Mathematica, New Series
,
ISSN
1022-1824,
Vol. 30, Nº. 3, 2024
,
págs.
1-27
Idioma:
inglés
DOI
:
10.1007/s00029-023-00911-5
Enlaces
Texto completo
Referencias bibliográficas
Breuillard, E., Green, B., Tao, T.: The structure of approximate groups. Publ. Math. Inst. Hautes Études Sci. 116, 115–221 (2012).
Chernikov, A., Galvin, D., Starchenko, S.: Cutting lemma and Zarankiewicz’s problem in distal structures. Selecta Math. (N.S.), 26(2), Paper...
Conversano, A.: Groups definable in o-minimal structures: various properties and a diagram 12782, 2020 (2010).
Coste, M.: An introduction to o-minimal geometry. Istituti editoriali e poligrafici internazionali Pisa (2000).
Edmundo, M.J.: Solvable groups definable in o-minimal structures. J. Pure Appl. Algebra 185(1), 103–145 (2003).
Erdős, P.: On a lemma of Littlewood and Offord. Bull. Am. Math. Soc. 51, 898–902 (1945).
Fox, J., Kwan, M., Spink, H.: Geometric and o-minimal Littlewood-Offord problems. Ann. Probab. 2022+ (to appear).
Frankl, P., Füredi, Z.: Solution of the Littlewood-Offord problem in high dimensions. Ann. Math. (2) 128(2), 259–270 (1988).
Gleason, A.M.: Groups without small subgroups. Ann. Math. 2(56), 193–212 (1952).
Hrushovski, E.: Stable group theory and approximate subgroups. J. Am. Math. Soc. 25(1), 189–243 (2012).
Juškevičius, T., Šemetulskis, G.: Optimal Littlewood-Offord inequalities in groups. Combinatorica 39(4), 911–921 (2019).
Kane, D.M.: The correct exponent for the Gotsman-Linial conjecture. Comput. Complexity 23(2), 151–175 (2014).
Kleitman, D.J.: On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors. Adv. Math. 5(155–157), 1970 (1970).
Littlewood, J.E., Offord, A.C.: On the number of real roots of a random algebraic equation. III. Rec. Math. [Mat. Sbornik] N.S., 12(54), 277–286...
Miller, C.: Expansions of o-minimal structures on the real field by trajectories of linear vector fields. Proc. Am. Math. Soc. 139(1), 319–330...
Montgomery, D., Zippin, L.: Small subgroups of finite-dimensional groups. Ann. Math. 2(56), 213–241 (1952).
Nguyen, H., Van, V.: Optimal inverse Littlewood-Offord theorems. Adv. Math. 226(6), 5298–5319 (2011).
Nguyen, H.H.: Anti-concentration of inhomogeneous random walks (2017). arXiv:1508.01393.
Otero, M.: A survey on groups definable in o-minimal structures, volume 2 of London Mathematical Society Lecture Note Series, pp. 177–206....
Peterzil, Y., Pillay, A., Starchenko, S.: Definably simple groups in o-minimal structures. Trans. Am. Math. Soc. 352(10), 4397–4419 (2000).
Peterzil, Y., Starchenko, S.: Expansions of algebraically closed fields in o-minimal structures. Selecta Math. (N.S.), 7(3), 409–445 (2001).
Peterzil, Y., Starchenko, S.: Expansions of algebraically closed fields. II. Functions of several variables. J. Math. Log. 3(1), 1–35 (2003).
Peterzil, Y., Starchenko, S.: Uniform definability of the Weierstrass ℘ functions and generalized tori of dimension one. Selecta Math. (N.S.)...
Pila, J., Wilkie, A.J.: The rational points of a definable set. Duke Math. J. 133(3), 591–616 (2006).
Pila, J.: On the algebraic points of a definable set. Selecta Math. (N.S.) 15(1), 151–170 (2009).
Pila, J.: O-minimality and the André-Oort conjecture for Cn. Ann. Math. (2) 173(3), 1779–1840 (2011).
Pila, J., Zannier, U.: Rational points in periodic analytic sets and the Manin–Mumford conjecture. Atti Accad. Naz. Lincei Rend. Lincei Mat....
Pillay, A.: First order topological structures and theories. J. Symb. Logic 52(3), 763–778 (1987).
Pillay, A.: On groups and fields definable in o-minimal structures. J. Pure Appl. Algebra 53(3), 239–255 (1988).
Scanlon, T.: A Euclidean Skolem-Mahler-Lech-Chabauty method. Math. Res. Lett. 18(5), 833–842 (2011).
Strzebonski, A.W.: Euler characteristic in semialgebraic and other o-minimal groups. J. Pure Appl. Algebra 96(2), 173–201 (1994).
Tao, T., Vu, V.: From the Littlewood-Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull....
Tao, T., Vu, V.H.: Inverse Littlewood-Offord theorems and the condition number of random discrete matrices. Ann. Math. (2) 169(2), 595–632...
Tarski, A.: A decision method for elementary algebra and geometry, 2nd edn. University of California Press, Berkeley and Los Angeles (1951).
Tiep, P.H., Van, H.V.: Non-abelian Littlewood-Offord inequalities. Adv. Math. 302, 1233–1250 (2016).
van den Dries, L.: Tame Topology and o-minimal Structures. London Mathematical Society Lecture Note Series, vol. 248. Cambridge University...
van den Dries, L., Miller, C.: On the real exponential field with restricted analytic functions. Israel J. Math. 85(1–3), 19–56 (1994).
Yamabe, H.: On the conjecture of Iwasawa and Gleason. Ann. Math. 2(58), 48–54 (1953).
Acceso de usuarios registrados
Identificarse
¿Olvidó su contraseña?
¿Es nuevo?
Regístrese
Ventajas de registrarse
Mi Documat
S
elección
Opciones de artículo
Seleccionado
Opciones de compartir
Opciones de entorno
Sugerencia / Errata
©
2008-2025
Fundación Dialnet
· Todos los derechos reservados
Accesibilidad
Aviso Legal
Coordinado por:
I
nicio
B
uscar
R
evistas
T
esis
Libr
o
antiguo
A
u
tores
Ayuda
R
e
gistrarse
¿En qué podemos ayudarle?
×
Buscar en la ayuda
Buscar