Ir al contenido

Documat


When the Fourier transform is one loop exact?

  • Maxim Kontsevich [1] ; Alexander Odesskii [2]
    1. [1] IHES, 35 route de Chartres, France
    2. [2] Brock University, 1812 Sir Isaac Brock Way, Canada
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-55
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00920-y
  • Enlaces
  • Referencias bibliográficas
    • Etingof, P., Kazhdan, D., Polishchuk, A.: When is the Fourier transform of an elementary function elementary? Sel. Math. New Ser. 8, 27–66...
    • Kazhdan, D.: An Algebraic Integration, Mathematics: Frontiers and Perspectives, pp. 93–115. American Mathematical Society, Providence (2000).
    • Kontsevich, M., Odesskii, A.: Multiplication kernels. Lett. Math. Phys. 111(6), 152 (2021).
    • Bessis, D., Itzykson, C., Zuber, J.B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math. 1(2), 109–157 (1980).
    • Moyal, J.: Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc. 45, 99 (1949).
    • Brylinski, J.L.: Transformations canoniques, Dualité projective, Théorie de Lefschetz, Transformations de Fourier et sommes trigonométriques....
    • Encyclopedia of Special Functions: The Askey-Bateman Project, Tables of Integral Transforms, vol. II. McGraw-Hill Book Company, Inc. (1954)....
    • Coffman, A., Schwartz, A., Stanton, C.: The Algebra and geometry of Steiner and other quadratically parametrizable surfaces. Comput. Aided...
    • Dolgachev, I.: Kummer surfaces: 200 years of study. Not. Am. Math. Soc. 67(10), 1 (2020).
    • Wilczynski, E.I.: Projective-differential geometry of curved surfaces. Trans. AMS 8, 233–260 (1907).
    • Wilczynski, E.I.: Projective-differential geometry of curved surfaces. Trans. AMS 9, 79–120, 293–315 (1908).
    • Wilczynski, E.I.: Projective-differential geometry of curved surfaces. Trans. AMS 10, 176–200, 279–296 (1909).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno