Ir al contenido

Documat


Representation theoretic interpretation and interpolation properties of inhomogeneous spin q-Whittaker polynomials

  • Sergei Korotkikh [1]
    1. [1] University of California System

      University of California System

      Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-70
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00930-w
  • Enlaces
  • Resumen
    • We establish new properties of inhomogeneous spin q-Whittaker polynomials, which are symmetric polynomials generalizing t = 0 Macdonald polynomials. We show that these polynomials are defined in terms of a vertex model, whose weights come not from an R-matrix, as is often the case, but from other intertwining operators of U q (sl2)-modules. Using this construction, we are able to prove a Cauchy-type identity for inhomogeneous spin q-Whittaker polynomials in full generality. Moreover, we are able to characterize spin q-Whittaker polynomials in terms of vanishing at certain points, and we find interpolation analogues of q-Whittaker and elementary symmetric polynomials.

  • Referencias bibliográficas
    • Aggarwal, A., Borodin, A., Wheeler, M.: Colored Fermionic Vertex Models and Symmetric Functions. (2021). arXiv:2101.01605.
    • Aggarwal, A.: Dynamical stochastic higher spin vertex models. Sel. Math. 24, 2659–2735 (2018). arXiv:1704.02499.
    • Brubaker, B., Bump, D., Friedberg, S.: Schur polynomials and the Yang–Baxter equation. Commun. Math. Phys. 308, 281–301 (2011). arXiv:0912.0911.
    • Borodin, A., Korotkikh, S.: Inhomogeneous spin q-Whittaker polynomials. (2021). arXiv:2104.01415.
    • Bosnjak, S., Mangazeev, V.: Construction of R-matrices for symmetric tensor representations related to 𝑈 𝑞 ( 𝑠 𝑙 𝑛 ) U...
    • Bump, D., McNamara, P., Nakasuji, M.: Factorial Schur functions and the Yang–Baxter equation. Comment. Math. Univ. St. Pauli 63, 23–45 (2014)....
    • Borodin, A.: On a family of symmetric rational functions. Adv. Math. 306, 973–1018 (2017). arXiv:1410.0976.
    • Borodin, A., Petrov, L.: Higher spin six vertex model and symmetric rational functions. Sel. Math. New Ser. 24, 751–874 (2018). arXiv:1601.05770.
    • Buciumas, V., Scrimshaw, T., Weber, K.: Colored five-vertex models and Lascoux polynomials and atoms. J. Lond. Math. Soc. 102(3), 1047–1066...
    • Borodin, A., Wheeler, M.: Spin q-Whittaker polynomials. Adv. Math. (2020). https://doi.org/10.1016/j.aim.2020.107449. arXiv:1701.06292.
    • Borodin, A., Wheeler, M.: Coloured stochastic vertex models and their spectral theory. arXiv:1808.01866.
    • Chari, V.: Braid group actions and tensor products. Int. Math. Res. Not. 7, 357–382 (2002). arXiv /0106241.
    • Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994).
    • Chari, V., Pressley, A.: Minimal affinizations of representations of quantum groups: the simply-laced case. Lett. Math. Phys. 35, 99–114 (1995)....
    • Cuenca, C.: Interpolation Macdonald operators at infinity. Adv. Appl. Math. 101, 15–59 (2018). arXiv:1712.08014.
    • Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Exactly solvable sos models II: proof of the star-triangle relation and combinatorial...
    • Drinfeld, V.G.: A New realization of Yangians and quantized affine algebras. Sov. Math. Dokl. 36, 212–216 (1988).
    • Howe, R., Umeda, T.: The Capelli identity, the double commutant theorem, and multiplicity-free actions. Math. Ann. 290, 569–619 (1991).
    • Ivanov, V.: Interpolation analogues of Schur Q-functions. J. Math. Sci. 131, 5495–5507 (2005). arXiv /0305419.
    • Jimbo, M.: A q-analogue of 𝑈 ( 𝑔 𝑙 𝑁 + 1 ) U(gl N+1 ​ ), Hecke algebra, and the Yang–Baxter equation....
    • Jing, N.: On Drinfeld realization of quantum affine algebras. Ohio State University Math. Research Institute Publications, Gruyter Berlin...
    • Korff, C.: Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra. Commun. Math. Phys. 318(1), 173–246 (2013)....
    • Koornwinder, T.: Okounkov’s BC-type interpolation Macdonald polynomials and their 𝑞 = 1 q=1 limit. Sém. Lothar. Combin. B72a...
    • Korotkikh, S.: Hidden diagonal integrability of the q-Hahn vertex model and Beta polymer model. (2021). arXiv:2105.05058.
    • Kirillov, A.N., Reshetikhin, N.Y.: Representations of the algebra 𝑈 𝑞 ( 𝑠 𝑙 2 ) U q ​ (sl 2 ​ ), q-orthogonal...
    • Knop, F., Sahi, S.: Difference equations and symmetric polynomials defined by their zeros. Int. Math. Res. Not. 10, 473–486 (1996). arXiv /9610017.
    • Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford Mathematical Monographs, 2nd edn. The Clarendon Press, New York (1995).
    • Mangazeev, V.: On the Yang–Baxter equation for the six-vertex model. Nucl. Phys. B 882, 70–96 (2014). arXiv:1401.6494.
    • Mucciconi, M., Petrov, L.: Spin q-Whittaker polynomials and deformed quantum Toda. arXiv:2003.14260.
    • Molev, A.I., Tolstoy, V.N., Zhang, R.B.: On irreducibility of tensor products of evaluation modules for the quantum affine algebra. J. Phys....
    • Okounkov, A.: (Shifted) Macdonald polynomials: q-integral representation and combinatorial formula. Comput. Math. 112, 147–182 (1998). arXiv /9605013.
    • Okounkov, A.: Binomial formula for Macdonald polynomials and applications. Math. Res. Lett. 4, 533–553 (1997). arXiv /9608021.
    • Okounkov, A.: BC-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials. Transform. Groups 3(2), 181–207...
    • Okounkov, A.: On Newton interpolation of symmetric functions: a characterization of interpolation Macdonald polynomials. Adv. Appl. Math....
    • Olshanski, G.: Interpolation Macdonald polynomials and Cauchy-type identities. J. Comb. Theory Ser. A 162, 65–117 (2019). arXiv:1712.08018.
    • Okounkov, A., Olshanski, G.: Shifted Schur functions. Algebra Analiz 9(2), 73–146 (1997); St. Petersburg Math. J. 9(2), 239–300 (1998). arXiv /9605042.
    • Okounkov, A., Olshanski, G.: Shifted Jack polynomials, binomial formula, and applications. Math. Res. Lett. 4, 69–78 (1997). arXiv /9608020.
    • Petrov, L.: Refined Cauchy identity for spin Hall–Littlewood symmetric rational functions. J. Comb. Theory Ser. A 184, 105519 (2021). arXiv:2007.10886.
    • Rains, E.: BCn-symmetric polynomials. Transform. Groups 10, 63–132 (2005). arXiv /0112035.
    • Rains, E.: BCn-symmetric abelian functions. Duke Math. J. 135(1), 99–180 (2006). arXiv /0402113.
    • Sahi, S.: The spectrum of certain invariant differential operators associated to Hermitian symmetric spaces. Lie theory and geometry. In:...
    • Sahi, S.: Interpolation, integrality, and a generalization of Macdonald’s polynomials. Int. Math. Res. Not. 10, 457–471 (1996).
    • Stembridge, J.R.: A short proof of Macdonald’s conjecture for the root systems of type A. Proc. Am. Math. Soc. 102, 777–785 (1988).
    • Tsilevich, N.: Quantum inverse scattering method for the q-boson model and symmetric functions. Funct. Anal. Appl. 40(3), 207–217 (2006)....
    • Young, C.A.S., Mukhin, E.: Affinization of category O for quantum groups. Trans. Am. Math. Soc. 366, 4815–4847 (2014). arxiv.org/abs/1204.2769.
    • Zinn-Justin, P.: Six-Vertex, Loop and Tiling Models: Integrability and Combinatorics. Habilitation Thesis. Lambert Academic Publishing (2009)....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno