Ir al contenido

Documat


On the physical rigidity of Frenkel-Gross connection

  • Lingfei Yi [1]
    1. [1] University of Minnesota

      University of Minnesota

      City of Minneapolis, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-23
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00931-9
  • Enlaces
  • Resumen
    • We show that the Frenkel-Gross connection on Gm is physically rigid as Gˇ -connection, thus confirming the de Rham version of a conjecture of Heinloth-Ngô-Yun. The proof is based on the construction of the Hecke eigensheaf of a Gˇ -connection with only generic oper structure, using the localization of Weyl modules.

  • Referencias bibliográficas
    • Arinkin, D.: Irreducible connections admit generic oper structures. arXiv:1602.08989 (2016)
    • Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s integrable system and Hecke eigensheaves. (1997). https://www.math.uchicago.edu/mitya/langlands/hitchin/BD-hitchin.pdf
    • Ben-Zvi, D., Frenkel, E.: Vertex algebras and algebraic curves, volume 88 of Mathematical Surveys and Monographs. American Mathematical Society,...
    • Bloch, S., Esnault, H.: Local Fourier transforms and rigidity for D-modules. Asian J. Math. 8(4), 587–605 (2004)
    • Chen, T.-H.: Vinberg’s θ-groups and rigid connections. Int. Math. Res. Not. IMRN 23, 7321–7343 (2017)
    • Chen, T.-H., Kamgarpour, M.: Preservation of depth in the local geometric Langlands correspondence. Trans. Amer. Math. Soc. 369(2), 1345–1364...
    • Dettweiler, M., Reiter, S.: The classification of orthogonally rigid G2-local systems and related differential operators. Trans. Amer. Math....
    • Feigin, B., Frenkel, E.: Affine Kac-Moody algebras at the critical level and Gelfand-Diki algebras, volume 16 of Infinite Analysis, Part A,...
    • Feigin, B., Frenkel, E., Rybnikov, L.: On the endomorphisms of Weyl modules over affine Kac-Moody algebras at the critical level. Lett. Math....
    • Feigin, B., Frenkel, E., Rybnikov, L.: Opers with irregular singularity and spectra of the shift of argument subalgebra. Duke Math. J. 155(2),...
    • Feigin, B., Frenkel, E., Toledano Laredo, V.: Gaudin models with irregular singularities. Adv. Math. 223(3), 873–948 (2010)
    • Frenkel, E.: Affine algebras, Langlands duality and Bethe ansatz, pages 606–642. XIth International Congress of Mathematical Physics (Paris,...
    • Frenkel, E.: Langlands correspondence for loop groups. Cambridge Studies in Advanced Mathematics, vol. 103. Cambridge University Press, Cambridge...
    • Frenkel, E.: Lectures on the Langlands program and conformal field theory, pages 387–533. Frontiers in number theory, physics, and geometry....
    • Frenkel, E.: Ramifications of the geometric Langlands program, volume 1931 of Representation theory and complex analysis, pages 51–135. Springer,...
    • Frenkel, E., Gaitsgory, D.: Local geometric Langlands correspondence and affine Kac-Moody algebras, volume 253 of Progr. Math., Algebraic...
    • Frenkel, E., Gaitsgory, D.: Weyl modules and opers without monodromy, volume 279 of Progr. Math., Arithmetic and geometry around quantization,...
    • Frenkel, E., Gross, B.: A rigid irregular connection on the projective line. Ann. Math. (2) 170(3), 1469–1512 (2009)
    • Heinloth, J., Ngô, B.C., Yun, Z.: Kloosterman sheaves for reductive groups. Ann. Math. 2(177), 241–310 (2013)
    • Kamgarpour, M., Sage, D.S.: A geometric analogue of a conjecture of Gross and Reeder. Amer. J. Math. 141(5), 1457–1476 (2019)
    • Kamgarpour, M., Sage, D.S.: Rigid connections on P1 via the Bruhat-Tits building. Proc. Lond. Math. Soc. (3) 122(3), 359–376 (2021)
    • Kamgarpour, M., Nam, G., Puskás, A.: Arithmetic geometry of character varieties with regular monodromy, i. (2023a)
    • Kamgarpour, M., Xu, D., Yi, L.: Hypergeometric sheaves for classical groups via geometric Langlands. Trans. Amer. Math. Soc. 376(5), 3585–3640...
    • Katz, N.M.: Rigid local systems. Annals of Mathematics Studies, vol. 139. Princeton University Press, Princeton, NJ (1996)
    • Molev, A.I.: Sugawara operators for classical Lie algebras. Mathematical Surveys and Monographs, vol. 229. American Mathematical Society,...
    • Xu, D., Zhu, X.: Bessel F-isocrystals for reductive groups. Invent. Math. 227(3), 997–1092 (2022)
    • Yun, Z.: Rigidity in automorphic representations and local systems, pages 73–168. Current developments in mathematics 2013. Int. Press, Somerville,...
    • Zhu, X.: Frenkel-Gross’ irregular connection and Heinloth-Ngô-Yun’s are the same. Selecta Math. (N.S.) 23(1), 245–274 (2017)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno