Ir al contenido

Documat


From hypertoric geometry to bordered Floer homology via the m = 1 amplituhedron

  • Aaron D. Lauda [1] ; Anthony M. Licata [2] ; Andrew Manion [1]
    1. [1] University of Southern California

      University of Southern California

      Estados Unidos

    2. [2] Australian National University

      Australian National University

      Australia

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-59
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00932-8
  • Enlaces
  • Resumen
    • We relate the Fukaya category of the symmetric power of a genus zero surface to deformed category O of a cyclic hypertoric variety by establishing an isomorphism between algebras defined by Ozsváth–Szabó in Heegaard–Floer theory and Braden– Licata–Proudfoot–Webster in hypertoric geometry. The proof extends work of Karp– Williams on sign variation and the combinatorics of the m = 1 amplituhedron. We then use the algebras associated to cyclic arrangements to construct categorical actions of gl(1|1), and generalize our isomorphism to give a conjectural algebraic description of the Fukaya category of a complexified hyperplane complement.

  • Referencias bibliográficas
    • Arkani-Hamed, N., Bai, Y., Lam, T.: Positive geometries and canonical forms. J. High Energy Phys. 11, 039, front matter+121 (2017). arXiv:1703.04541
    • Arkani-Hamed, N., Trnka, J.: The Amplituhedron. JHEP 2014(30), 1029–8479 (2014). arXiv:1312.2007
    • Arkani-Hamed, N., Thomas, H., Trnka, J.: Unwinding the amplituhedron in binary. JHEP 2018(16), 1029–8479 (2018). arXiv:1704.05069
    • Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987).
    • Auroux, D.: Fukaya categories and bordered Heegaard–Floer homology. In: Proceedings of the International Congress of Mathematicians. Volume...
    • Bielawski, R., Dancer, A.S.: The geometry and topology of toric hyperkähler manifolds. Commun. Anal. Geom. 8(4), 727–760 (2000).
    • Braden, T., Licata, A., Phan, C., Proudfoot, N., Webster, B.: Localization algebras and deformations of Koszul algebras. Selecta Math. (N.S.)...
    • Braden, T., Licata, A., Proudfoot, N., Webster, B.: Gale duality and Koszul duality. Adv. Math. 225(4), 2002–2049 (2010). arXiv:0806.3256
    • Braden, T., Licata, A., Proudfoot, N., Webster, B.: Hypertoric category O. Adv. Math. 231(3–4), 1487–1545 (2012). arXiv:1010.2001
    • Braden, T., Licata, A., Proudfoot, N., Webster, B.: Quantizations of conical symplectic resolutions II: category O and symplectic duality....
    • Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented Matroids. Encyclopedia, volume 46 of Mathematics and its Applications,...
    • Braden, T., Proudfoot, N., Webster, B.: Quantizations of conical symplectic resolutions I: local and global structure. Astérisque 384, 1–73...
    • Calabi, E.: Métriques kählériennes et fibrés holomorphes. Ann. Sci. École Norm. Sup. (4) 12(2), 269–294 (1979).
    • Douglas, C.L., Manolescu, C.: On the algebra of cornered Floer homology. J. Topol. 7(1), 1–68 (2014). arXiv:1105.0113
    • Eguchi, T., Hanson, A.J.: Self-dual solutions to Euclidean gravity. Ann. Phys. 120(1), 82–106 (1979).
    • Ellis, A.P., Petkova, I., Vértesi, V.: Quantum gl(1|1) and tangle Floer homology. Adv. Math. 350, 130–189 (2019). arXiv:1510.03483
    • Fan, Z., Li, Y.: A geometric setting for quantum osp(1|2). Trans. Am. Math. Soc. 367(11), 7895–7916 (2015). arXiv:1305.0710
    • Forge, D., Ramírez Alfonsín, J.L.: On counting the k-face cells of cyclic arrangements. Eur. J. Combin. 22(3), 307–312 (2001).
    • Gibbons, G.W., Hawking, S.W.: Gravitational multi-instantons. Phys. Lett. B 78(4), 430–432 (1978).
    • Gantmacher, F.R., Krein, M.G.: Oscillation Matrices and Small Oscillations of Mechanical Systems. Moscow-Leningrad, Gostekhizdat (1941).
    • Goto, R.: On toric hyper-Kähler manifolds given by the hyper-Kähler quotient method. In: Infinite Analysis, Part A, B (Kyoto, 1991), volume...
    • Hilbert, D.: Über die Theorie der algebraischen Formen. Math. Ann. 36(4), 473–534 (1890).
    • Hochster, M.: Topics in the homological theory of modules over commutative rings. Published for the Conference Board of the Mathematical Sciences...
    • Intriligator, K., Seiberg, N.: Mirror symmetry in three-dimensional gauge theories. Phys. Lett. B 387(3), 513–519 (1996). arXiv /9607207.
    • Kleshchev, A.: Affine highest weight categories and affine quasihereditary algebras. Proc. Lond. Math. Soc. (3) 110(4), 841–882 (2015). arXiv:1405.3328.
    • Khovanov, M., Seidel, P.: Quivers, Floer cohomology, and braid group actions. J. Am. Math. Soc. 15(1), 203–271 (2002). arXiv /0006056.
    • Karp, S.N., Williams, L.K.: The m = 1 amplituhedron and cyclic hyperplane arrangements. Int. Math. Res. Not. IMRN 5, 1401–1462 (2019)....
    • Lauda, A.D., Licata, A., Manion, A.: Strands algebras and the affine highest weight property for equivariant hypertoric categories (2021)....
    • Lauda, A.D., Manion, A.: Ozsváth-Szabó bordered algebras and subquotients of category O. Adv. Math. 376, 107455, 59 (2021). arXiv:1910.03770.
    • Lipshitz, R., Ozsváth, P.S., Thurston, D.P.: Bordered Heegaard Floer homology. Mem. Am. Math. Soc. 254(1216) +279 (2018). arXiv:0810.0687.
    • Lekili, Y., Polishchuk, A.: Homological mirror symmetry for higher-dimensional pairs of pants. Compos. Math. 156(7), 1310–1347 (2020). arXiv:1811.04264.
    • Manion, A.: Khovanov–Seidel quiver algebras and Ozsváth–Szabó’s bordered theory. J. Algebra 488, 110–144 (2017). arXiv:1605.08082.
    • Manion, A.: On the decategorification of Ozsváth and Szabó’s bordered theory for knot Floer homology. Quantum Topol. 10(1), 77–206 (2019)....
    • Manion, A.: Trivalent vertices and bordered knot Floer homology in the standard basis (2020). arXiv:2012.07184.
    • Manion, A., Marengon, M., Willis, M.: Generators, relations, and homology for Ozsváth–Szabó’s Kauffman-states algebras. Nagoya Math. J. (2020)....
    • Manion, A., Marengon, M., Willis, M.: Strands algebras and Ozsváth and Szabó’s Kauffman-states functor. Algebr. Geom. Topol. 20(7), 3607
    • Manion, A., Rouquier, R.: Higher representations and cornered Heegaard Floer homology (2020). arXiv:2009.09627
    • Ozsváth, P.S., Szabó, Z.: Kauffman states, bordered algebras, and a bigraded knot invariant. Adv. Math. 328, 1088–1198 (2018). arXiv:1603.06559
    • Ozsváth, P. S., Szabó, Z.: Algebras with matchings and knot Floer homology (2019). arXiv:1912.01657
    • Ozsváth, P.S., Szabó, Z.: Bordered knot algebras with matchings. Quantum Topol. 10(3), 481–592 (2019). arXiv:1707.00597
    • Ozsváth, P. S., Szabó, Z.: Knot Floer homology calculator, 2019. https://web.math.princeton.edu/~szabo/HFKcalc.html
    • Ozsváth, P. S., Szabó, Z.: Algebras with matchings and link Floer homology, 2020. arXiv:2004.07309
    • Postnikov, A.: Total positivity, Grassmannians, and networks, 2006. arXiv /0609764
    • Proudfoot, N.J.: Hyperkahler Analogues of Kahler Quotients. ProQuest LLC, Ann Arbor (2004). Thesis (Ph.D.)–University of California, Berkeley
    • Ramírez Alfonsín, J.L.: Cyclic arrangements and Roudneff’s conjecture in the space. Inform. Process. Lett. 71(5–6), 179–182 (1999)
    • Sartori, A.: Categorification of tensor powers of the vector representation of Uq(gl(1|1)). Selecta Math. (N.S.) 22(2), 669–734 (2016). arXiv:1305.6162
    • Schoenberg, I.: Über variationsvermindernde lineare Transformationen. Math. Z. 32(1), 321–328 (1930)
    • Shannon, R.W.: Simplicial cells in arrangements of hyperplanes. Geom. Dedic. 8(2), 179–187 (1979)
    • Shan, P., Varagnolo, M., Vasserot, E.: Koszul duality of affine Kac–Moody algebras and cyclotomic rational double affine Hecke algebras. Adv....
    • Tian, Y.: A categorification of UT(sl(1|1)) and its tensor product representations. Geom. Topol. 18(3), 1635–1717 (2014). arXiv:1301.3986
    • Tian, Y.: Categorification of Clifford algebras and Uq(sl(1|1)). J. Symplectic Geom. 14(2), 541–585 (2016). arXiv:1210.5680
    • Zarev, R.: Bordered Sutured Floer Homology. ProQuest LLC, Ann Arbor (2011). Thesis (Ph.D.)—Columbia University
    • Ziegler, G.M.: Higher Bruhat orders and cyclic hyperplane arrangements. Topology 32(2), 259–279 (1993)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno