Ir al contenido

Documat


Cut-and-join operators in cohomological field theory and topological recursion

  • Alexander Alexandrov [1]
    1. [1] Center for Geometry and Physics, Institute for Basic Science (IBS), Korea
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-44
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00933-7
  • Enlaces
  • Resumen
    • We construct a cubic cut-and-join operator description for the partition function of the Chekhov–Eynard–Orantin topological recursion for a local spectral curve with simple ramification points. In particular, this class contains partition functions of all semisimple cohomological field theories. The cut-and-join description leads to an algebraic version of topological recursion. For the same partition functions we also derive N families of the Virasoro constraints and prove that these constraints, supplemented by a deformed dimension constraint, imply the cut-and-join description.

  • Referencias bibliográficas
    • Andersen, J.E., Borot, G., Chekhov, L.O., Orantin, N.: The ABCD of topological recursion (2017). arXiv:1703.03307
    • Alexandrov, A.: Cut-and-join operator representation for Kontsevich–Witten tau-function. Modern Phys. Lett. A 26(29), 2193–2199 (2011). https://doi.org/10.1142/S0217732311036607
    • Alexandrov, A.: Cut-and-join description of generalized Brezin–Gross–Witten model. Adv. Theor. Math. Phys. 22(6), 1347–1399 (2018). https://doi.org/10.4310/ATMP.2018.v22.n6.a1
    • Alexandrov, A.: KP integrability of triple Hodge integrals. II. Generalized Kontsevich matrix model. Anal. Math. Phys., 11(1) No. 24, 82 (2021)....
    • Alexandrov, A.: KP integrability of triple Hodge integrals. III. Cut-and-join description, KdV reduction, and topological recursions (2021)....
    • Alexandrov, A.: Cut-and-join operators for higher Weil–Petersson volumes. Bull. Lond. Math. Soc. 55(6), 3012–3028 (2023). https://doi.org/10.1112/blms.12907
    • Alexandrov, A., Mironov, A., Morozov, A.: Instantons and Merons in matrix models. Phys. D 235(1–2), 126–167 (2007). https://doi.org/10.1016/j.physd.2007.04.018
    • Alexandrov, A., Mironov, A., Morozov, A.: BGWM as second constituent of complex matrix model. J. High Energy Phys. 12, 053, 49 (2009). https://doi.org/10.1088/1126-6708/2009/12/053
    • Borot, G., Bouchard, V., Chidambaram, N.K., Creutzig, T., Noshchenko, D.: Higher Airy structures, W algebras and topological recursion (2018)....
    • Chidambaram, N.K., Garcia-Failde, E., Giacchetto, A.: Relations on Mg,n and the negative r-spin Witten conjecture (2022). arXiv:2205.15621
    • Chekhov, L., Norbury, P.: Topological recursion with hard edges. Int. J. Math. 30(3), 1950014, 29 (2019). https://doi.org/10.1142/S0129167X19500149
    • Dunin-Barkowski, P., Orantin, N., Shadrin, S., Spitz, L.: Identification of the Givental formula with the spectral curve topological recursion...
    • Do, N., Norbury, P.: Topological recursion on the Bessel curve. Commun. Number Theory Phys. 12(1), 53–73 (2018). https://doi.org/10.4310/CNTP.2018.v12.n1.a2
    • Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Volume 1620...
    • Dijkgraaf, R., Verlinde, H., Verlinde, E.: Loop equations and Virasoro constraints in nonperturbative two-dimensional quantum gravity. Nuclear...
    • Dubrovin, B., Zhang, Y.: Frobenius manifolds and Virasoro constraints. Sel. Math. (N.S.) 5(4), 423–466 (1999). https://doi.org/10.1007/s000290050053
    • Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007). https://doi.org/10.4310/CNTP.2007.v1.n2.a4
    • Eynard, B., Orantin, N.: Topological recursion in enumerative geometry and random matrices. J. Phys. A 42(29), 293001, 117 (2009). https://doi.org/10.1088/1751-8113/42/29/293001
    • Eynard, B.: Invariants of spectral curves and intersection theory of moduli spaces of complex curves. Commun. Number Theory Phys. 8(3), 541–588...
    • Fukuma, M., Kawai, H., Nakayama, R.: Continuum Schwinger–Dyson equations and universal structures in two-dimensional quantum gravity. Int....
    • Givental, A.B.: Gromov–Witten invariants and quantization of quadratic Hamiltonians. vol. 1, pp. 551–568, 645 (2001). Dedicated to the memory...
    • Givental, A.B.: Semisimple Frobenius structures at higher genus. Int. Math. Res. Not. 23, 1265–1286 (2001). https://doi.org/10.1155/S1073792801000605
    • Gross, D.J., Newman, M.J.: Unitary and Hermitian matrices in an external field. II. The Kontsevich model and continuum Virasoro constraints....
    • Kontsevich, M., Manin, Yu.: Gromov–Witten classes, quantum cohomology, and enumerative geometry. Commun. Math. Phys. 164(3), 525–562 (1994)....
    • Kazarian, M., Norbury, P.: Polynomial relations among kappa classes on the moduli space of curves. Int. Math. Res. Not. (2023). https://doi.org/10.1093/imrn/rnad061
    • Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992). https://doi.org/10.1007/BF02099526
    • Kontsevich, M., Soibelman, Y.: Airy structures and symplectic geometry of topological recursion. In: Topological Recursion and Its influence...
    • Manin, Y.I.: Frobenius manifolds, quantum cohomology, and moduli spaces, volume 47 of American Mathematical Society Colloquium Publications....
    • Milanov, T.: The Eynard–Orantin recursion for the total ancestor potential. Duke Math. J. 163(9), 1795–1824 (2014). https://doi.org/10.1215/00127094-2690805
    • Mironov, A., Morozov, A., Semenoff, G.W.: Unitary matrix integrals in the framework of the generalized Kontsevich model. Int. J. Modern Phys....
    • Morozov, A., Shakirov, Sh.: Generation of matrix models by Wˆ -operators. J. High Energy Phys. (4):064, 33 (2009). https://doi.org/10.108
    • Norbury, P.: Enumerative geometry via the moduli space of super Riemann surfaces (2020). arXiv:2005.04378
    • Norbury, P.: A new cohomology class on the moduli space of curves. Geom. Topol. 27(7), 2695–2761 (2023). https://doi.org/10.2140/gt.2023.27.2695
    • Pandharipande, R.: Cohomological field theory calculations. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro...
    • Pandharipande, R., Pixton, A., Zvonkine, D.: Relations on Mg,n via 3-spin structures. J. Am. Math. Soc. 28(1), 279–309 (2015). https://doi.org/10.1090/S0894-0347-2014-00808-0
    • Shadrin, S.: BCOV theory via Givental group action on cohomological fields theories. Mosc. Math. J. 9(2), 411–429 (2009). https://doi.org/10.17323/1609-4514-2009-9-2-411-429
    • Teleman, C.: The structure of 2D semi-simple field theories. Invent. Math. 188(3), 525–588 (2012). https://doi.org/10.1007/s00222-011-0352-5
    • Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Surveys in Differential Geometry (Cambridge, MA, 1990), pp....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno