Ir al contenido

Documat


Weil zeta functions of group representations over finite fields

  • Ged Corob Cook [1] ; Steffen Kionke [2] Árbol académico ; Matteo Vannacci [3]
    1. [1] University of Lincoln

      University of Lincoln

      Lincoln District, Reino Unido

    2. [2] Fakultät für Mathematik und Informatik, FernUniversität in Hagen, Germany
    3. [3] Matematika Saila, UPV-EHU, Spain
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-57
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00934-6
  • Enlaces
  • Resumen
    • In this article we define and study a zeta function ζG—similar to the Hasse-Weil zeta function—which enumerates absolutely irreducible representations over finite fields of a (profinite) group G. ThisWeil representation zeta function converges on a complex half-plane for all UBERG groups and admits an Euler product decomposition. Our motivation for this investigation is the observation that the reciprocal value ζG(k)−1 at a sufficiently large integer k coincides with the probability that k random elements generate the completed group ring of G. The explicit formulas obtained so far suggest that ζG is rather well-behaved. A central object of this article is the Weil abscissa, i.e., the abscissa of convergence a(G) of ζG. We calculate the Weil abscissae for free abelian, free abelian pro-p, free pro-p, free pronilpotent and free prosoluble groups. More generally, we obtain bounds (and sometimes explicit values) for the Weil abscissae of free pro-C groups, where C is a class of finite groups with prescribed composition factors. We prove that every real number a ≥ 1 is the Weil abscissa a(G) of some profinite group G. In addition, we show that the Euler factors of ζG are rational functions in p−s if G is virtually abelian. For finite groups G we calculate ζG using the rational representation theory of G.

  • Referencias bibliográficas
    • Avni, N., Klopsch, B., Onn, U., Voll, C.: Representation zeta functions of compact p-adic analytic groups and arithmetic groups. Duke Math....
    • Babai, L., Cameron, P.J., Pálfy, P.P.: On the orders of primitive groups with restricted nonabelian composition factors. J. Algebra 79(1),...
    • Bach, E., Sorenson, J.: Explicit bounds for primes in residue classes. Math. Comput. 65, 1717–1735 (1996).
    • Banks, W.D., Shparlinski, I.E.: Bounds on short character sums and L-functions with characters to a powerful modulus. J. Anal. Math. 139,...
    • Bartle, R.G.: The Elements of Integration and Lebesgue Measure. Wiley Classics Library, New York (1995).
    • Blackburn, S., Neumann, P., Venkataraman, G.: Enumeration of Finite Groups. Cambridge Tracts in Mathematics, vol. 173. Cambridge University...
    • de Bruijn, N.: On Mahler’s partition problem. Proc. Sec. Sci. Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam 51(6), 659–669...
    • Carter, R., Fong, P.: The Sylow 2-Subgroups of the Finite Classical Groups. J. Algebra 1, 139–151 (1964).
    • Corob Cook, G., Kionke, S., Vannacci, M.: Counting irreducible modules for profinite groups. Revista Matemática Iberoamericana (2022, to appear).
    • Detinko, A., Flannery, D.: Nilpotent primitive linear groups over finite fields. Commun. Algebra 33(2), 497–505 (2005).
    • Detinko, A., Flannery, D.: Classification of nilpotent primitive linear groups over finite fields. Glasgow Math. J. 46, 585–594 (2004).
    • Dixon, J.D., du Sautoy, M.P.F., Mann, A., Segal, D.: Analytic pro-p Groups, 2nd edn. Cambridge University Press, Cambridge (1999).
    • du Sautoy, M.P.F., Segal, D.: Zeta Functions of Groups. In New horizons in pro-p groups, Progress in Mathematics, 184, pp. 249–286. Birkhäuser,...
    • Dwork, B.: On the rationality of the zeta function of an algebraic variety. Am. J. Math. 82, 631–648 (1960).
    • Fein, B.: Representations of direct products of finite groups. Pac. J. Math. 20(1), 45–58 (1967).
    • Gallagher, P.X.: Primes in progressions to prime-power modulus. Invent. Math. 16, 191–201 (1972).
    • García-Rodríguez, J.: Representation Growth. PhD thesis, Universidad Autónoma de Madrid (2016).
    • Grunewald, F.J., Segal, D., Smith, G.C.: Subgroups of finite index in nilpotent groups. Inventiones Mathematicae 93, 185–223 (1988).
    • Heath-Brown, D.: Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression. Proc. Lond. Math. Soc. 63–64(2),...
    • Humphreys, J.E.: Representations of SL(2, p). Am. Math. Mon. 82(1), 21–39 (1975).
    • Huxley, M.N.: Large values of Dirichlet polynomials. III. Acta Arith. 26, 435–444 (1975).
    • Isaacs, I.M.: Character Theory of Finite Groups. Dover Publications Inc, New York (1994).
    • Iwaniec, H.: On zeros of Dirichlet’s L-series. Invent. Math. 23, 97–104 (1974).
    • Jaikin-Zapirain, A., Pyber, L.: Random generation of finite and profinite groups and group enumeration. Ann. Math. 173(2), 769–814 (2011).
    • James, G.D.: The Representation Theory of the Symmetric Groups. Lecture Notes Mathematics 632, Springer, Berlin (1978).
    • Karpilovsky, G.: Clifford Theory for Group Representations. North Holland Mathematics Studies 156, Notas de Matemática 125, North Holland,...
    • Kassabov, M., Nikolov, N.: Cartesian products as profinite completions. Int. Math. Res. Not. 2006, 72947 (2006). https://doi.org/10.1155/IMRN/2006/72947.
    • Kleidman, P., Liebeck, M.: The Subgroup Structure of the Finite Classical Groups. London Mathematical Society Lecture Note Series 129. Cambridge...
    • Kionke, S., Klopsch, B.: Zeta functions associated to admissible representations of compact p-adic Lie groups. Trans. Am. Math. Soc. 372(11),...
    • Kionke, S., Vannacci, M.: Positively finitely related profinite groups. Israel J. Math. 225(2), 743–770 (2018).
    • Korthauer, F.: Arithmetic Representation Growth of Virtually Free Groups. PhD thesis, Bochum University (2021).
    • Larsen, M., Lubotzky, A.: Representation growth of linear groups. J. Eur. Math. Soc. (JEMS) 10(2), 351–390 (2008).
    • Liebeck, M.W., Shalev, A.: Bases of primitive linear groups. J. Algebra 252(1), 95–113 (2002).
    • Lubotzky, A., Segal, D.: Subgroup Growth. Progress in Mathematics, 212. Birkhäuser, Basel (2003).
    • Lucchini, A.: On profinite groups with polynomially bounded Möbius numbers. J. Group Theory 14, 261–271 (2011).
    • Mann, A.: Positively finitely generated groups. Forum Math. 8(4), 429–459 (1996).
    • Mertens, F.: Ein Beitrag zur analytischen Zahlentheorie. J. Reine Angew. Math. 78, 46–62 (1874).
    • Moretó, A.: On the largest Brauer and p-character degrees (2022, in preparation).
    • Neukirch, J.: Algebraic Number Theory. Springer, Berlin (1999).
    • Pálfy, P.: A polynomial bound for the orders of primitive solvable groups. J. Algebra 77, 127–137 (1982).
    • Praeger, C.E., Saxl, J.: On the orders of primitive permutation groups. Bull. Lond. Math. Soc. 12, 303–307 (1980).
    • Reiner, I.: Maximal Orders. Clarendon Press, Oxford (2003).
    • Ribes, L., Zalesskii, P.: Profinite Groups. A Series of Modern Surveys in Mathematics, vol. 40, Springer, Berlin (2010).
    • Segev, Y.: On completely reducible solvable subgroups of 𝐺𝐿(𝑛,𝐹)GL(n,F). Israel J. Math. 51, 163–176 (1985).
    • Stasinski, A., Voll, C.: Representation zeta functions of nilpotent groups and generating functions for Weyl groups of type B. Am. J. Math....
    • Solomon, L.: Zeta functions and integral representation theory. Adv. Math. 26(3), 306–326 (1977).
    • Voll, C.: A newcomer’s guide to zeta functions of groups and rings. In Lectures on profinite topics in group theory, London Mathematical Society...
    • Weil, A.: Number of solutions of equations over finite fields. Bull. Am. Math. Soc. 55, 497–508 (1949).
    • Weir, A.: Sylow p-subgroups of the classical groups over finite fields with characteristic prime to p. Proc. Am. Math. Soc. 6, 529–533 (1955).
    • Xylouris, T.: Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression. Rheinische...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno