Ir al contenido

Documat


Relative poset polytopes and semitoric degenerations

  • Evgeny Feigin [1] ; Igor Makhlin [2]
    1. [1] Tel Aviv University

      Tel Aviv University

      Israel

    2. [2] Technical University of Berlin

      Technical University of Berlin

      Berlin, Stadt, Alemania

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-38
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00935-5
  • Enlaces
  • Resumen
    • The two best studied toric degenerations of the flag variety are those given by the Gelfand–Tsetlin and FFLV polytopes. Each of them degenerates further into a particular monomial variety which raises the problem of describing the degenerations intermediate between the toric and the monomial ones. Using a theorem of Zhu one may show that every such degeneration is semitoric with irreducible components given by a regular subdivision of the corresponding polytope. This leads one to study the parts that appear in such subdivisions as well as the associated toric varieties. It turns out that these parts lie in a certain new family of poset polytopes which we term relative poset polytopes: each is given by a poset and a weakening of its order relation. In this paper we give an in depth study of (both common and marked) relative poset polytopes and their toric varieties in the generality of an arbitrary poset. We then apply these results to degenerations of flag varieties. We also show that our family of polytopes generalizes the family studied in a series of papers by Fang, Fourier, Litza and Pegel while sharing their key combinatorial properties such as pairwise Ehrhart-equivalence and Minkowski-additivity.

  • Referencias bibliográficas
    • Aguiar, M., Ardila, F.: Hopf monoids and generalized permutahedra. Mem. Am. Math. Soc. 289(1437), vi+119 (2023).
    • Alexeev, V., Brion, M.: Toric degenerations of spherical varieties. Sel. Math. New Ser. 10, 453–478 (2005).
    • Anderson, D.: Okounkov bodies and toric degenerations. Math. Ann. 356, 1183–1202 (2013).
    • Ardila, F., Bliem, T., Salazar, D.: Gelfand–Tsetlin polytopes and Feigin–Fourier–Littelmann–Vinberg polytopes as marked poset polytopes. J....
    • Batyrev, V., Ciocan-Fontanine, I., Kim, B., van Straten, D.: Mirror symmetry and toric degenerations of partial flag manifolds. Acta Math....
    • Caldero, P.: Toric degenerations of Schubert varieties. Transform. Groups 7, 51–60 (2002).
    • Chirivì, R.: LS algebras and application to Schubert varieties. Transform. Groups 5, 245–264 (2000).
    • Coates, T., Doran, C., Kalashnikov, E.: Unwinding toric degenerations and mirror symmetry for Grassmannians. Forum Math. Sigma 10, e111 (2022).
    • Cox, D., Little, J., Schenck, H.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011).
    • Fang, X., Fourier, G.: Marked chain-order polytopes. Eur. J. Comb. 58, 267–282 (2016).
    • Fang, X., Fourier, G., Littelmann, P.: On toric degenerations of flag varieties, pp. 187–232. Representation Theory - Current Trends and Perspectives,...
    • Fang, X., Fourier, G., Litza, J.-P., Pegel, C.: A continuous family of marked poset polytopes. SIAM J. Discrete Math. 34(1), 611–639 (2020).
    • Fang, X., Fourier, G., Pegel, C.: The Minkowski property and reflexivity of marked poset polytopes. Electron. J. Comb. 27 (2020). https://doi.org/10.37236/8144
    • Fang, X., Feigin, E., Fourier, G., Makhlin, I.: Weighted PBW degenerations and tropical flag varieties. Commun. Contemp. Math. 21(1), 1850016...
    • Fang, X., Littelmann, P.: From standard monomial theory to semi-toric degenerations via Newton-Okounkov bodies. Trans. Moscow Math. Soc. 78(2),...
    • Feigin, E., Fourier, G., Littelmann, P.: PBW filtration and bases for irreducible modules in type An. Transform. Groups 16, 71–89 (2011).
    • Feigin, E., Fourier, G., Littelmann, P.: Favourable modules: filtrations, polytopes, Newton-Okounkov bodies and flat degenerations. Transform....
    • Fujita, N.: Semi-toric degenerations of Richardson varieties arising from cluster structures on flag varieties. arXiv:2110.12731.
    • Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston (1994).
    • Gonciulea, N., Lakshmibai, V.: Degenerations of flag and Schubert varieties to toric varieties. Transform. Groups 1, 215–248 (1996).
    • Gelfand, I., Tsetlin, M.: Finite dimensional representations of the group of unimodular matrices. Dokl. Akad. Nauk USSR 71(5), 825–828 (1950).
    • Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics, vol. 260. Springer, London (2011).
    • Hibi, T.: Distributive lattices, affine semigroup rings and algebras with straightening laws. In Commutative Algebra and Combinatorics. Advanced...
    • Hibi, T., Li, N.: Chain polytopes and algebras with straightening laws. Acta Math. Vietnam 40, 447–452 (2015).
    • Hibi, T., Li, N., Li, T.X., Mu, L.L., Tsuchiya, A.: Order-chain polytopes. Ars Math. Contemp. 16(1), 299–317 (2019).
    • Knutson, A.: Degenerations of Schubert varieties: a survey, for the AIM workshop “Degeneration in algebraic geometry” (2015). Link
    • Kogan, M., Miller, E.: Toric degeneration of Schubert varieties and Gelfand-Tsetlin polytopes. Adv. Math. 193(1), 1–17 (2005).
    • Makedonskyi, I.: Semi-infinite Plücker relations and arcs over toric degeneration. Math. Res. Lett. 29(5), 1499–1536 (2022).
    • Makhlin, I.: Reference for the multiprojective Nullstellensatz? Link
    • Makhlin, I.: Gröbner fans of Hibi ideals, generalized Hibi ideals and flag varieties. J. Combin. Theory, Ser. A 185, 105541 (2022).
    • Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol. 227. Springer, New York (2005).
    • Mora, T., Robbiano, L.: The Gröbner fan of an ideal. J. Symb. Comput. 6(2–3), 183–208 (1988).
    • Morton, J., Pachter, L., Shiu, A., Sturmfels, B., Wienand, O.: Convex rank tests and semigraphoids. SIAM J. Discrete Math. 23(3), 1117–1134...
    • Morier-Genoud, S.: Geometric lifting of the canonical basis and semitoric degenerations of Richardson varieties. Trans. Am. Math. Soc. 360(1),...
    • Postnikov, A.: Permutohedra, associahedra, and beyond. Int. Math. Res. Not. 2009(6), 1026–1106 (2009).
    • Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1, 9–23 (1986).
    • Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. American Mathematical Society, Providence (1995).
    • Zhu, C.-G.: Degenerations of toric ideals and toric varieties. J. Math. Anal. Appl. 386, 613–618 (2012).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno