Ir al contenido

Documat


Prismatization

  • Vladimir Drinfeld [1]
    1. [1] University of Chicago

      University of Chicago

      City of Chicago, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-150
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00937-3
  • Enlaces
  • Resumen
    • The eventual goal is to construct three related “prismatization” functors from the category of p-adic formal schemes to that of formal stacks. This should provide a good category of coefficients for prismatic cohomology in the spirit of F-gauges. In this article we define and study the three versions of the prismatization of Spf Zp.

  • Referencias bibliográficas
    • Artin, M., Grothendieck, A., Verdier, J.-L.: SGA 4: Théorie des Topos et Cohomologie Étale des Schémas, tome 3. Lecture Notes in Mathematics,...
    • Borger, J.: Witt vectors, lambda-rings, and arithmetic jet spaces. Course at the University of Copenhagen.https://maths-people.anu.edu.au/~borger/classes/copenhagen-2016/index.html
    • Borger, J., Gurney, L.: Canonical lifts and δ-structures. Selecta Math. (N.S.) 26(5), 67 (2020)
    • Bhatt, B.: Prismatic F-gauges.https://www.math.ias.edu/~bhatt/teaching.html
    • Bhatt, B., Lurie, J.: Absolute prismatic cohomology. arXiv:2201.06120, version 1
    • Bhatt, B., Lurie, J.: The prismatization of p-adic formal schemes. arXiv:2201.06124, version 1
    • Bhatt, B., Morrow, M., Scholze, P.: Topological Hochschild homology and integral p-adic Hodge theory. Publ. Math. IHES 129, 199–310 (2019)
    • Bhatt, B., Scholze, P.: Prisms and prismatic cohomology. Ann. Math. (2) 196(3), 1135–1275 (2022)
    • Cesnaviˇ ˇ cius, K., Scholze, P.: Purity for flat cohomology. Ann. Math. (2) 199(1), 51–180 (2024)
    • Deligne, P., Illusie, L.: Relèvements modulo p² et décomposition du complexe de de Rham. Invent. Math. 89(2), 247–270 (1987)
    • Drinfeld, V.: On algebraic spaces with an action of Gm. arXiv:1308.2604
    • Drinfeld, V.: A Stacky approach to crystalline (and prismatic) cohomology (Lecture at the IAS on October 3, 2019) https://video.ias.edu/puias/2019/1003-VladimirDrinfeld
    • Drinfeld, V.: Prismatization, version 1 of arXiv:2005.04746
    • Drinfeld, V.: On a notion of ring groupoid. arXiv:2104.07090
    • Drinfeld, V.: A 1-dimensional formal group over the prismatization of Spf Zp. arXiv:2107.11466, To appear in Pure and Applied Mathematics...
    • Fargues, L., Fontaine, J.-M.: Courbes et fibrés vectoriels en théorie de Hodge p-adique. Astérisque 406 (2018)
    • Fontaine, J.-M., Jannsen, U.: Frobenius gauges and a new theory of p-torsion sheaves in characteristic p. Doc. Math. 26, 65–101 (2021)
    • Gaitsgory, D.: The Atiyah-Bott formula for the cohomology of the moduli space of bundles on a curve, arXiv:1505.02331
    • Gepner, D., Haugseng, R., Nikolaus, T.: Lax colimits and free fibrations in ∞-categories. Doc. Math. 22, 1225–1266 (2017)
    • Grothendieck, A.: Crystals and the de Rham cohomology of schemes. In: Dix exposés sur la cohomologie des schémas, Advanced Studies in Pure...
    • Joyal, A.: δ-anneaux et vecteurs de Witt. C. R. Math. Rep. Acad. Sci. Canada 7(3), 177–182 (1985)
    • Laumon, G., Moret-Bailly, L.: Champs algébriques. Ergebnisse der Mathematik und ihrer Grenzgebiete (3 Folge, A Series of Modern Surveys in...
    • Lawvere, W.: Functorial semantics of algebraic theories. Proc. Natl. Acad. Sci. USA 50, 869–872 (1963)
    • Lawvere, W.: Functorial semantics of algebraic theories. Ph.D. Thesis (Columbia University, 1963). Published with an author’s comment and...
    • Lazard, M.: Commutative formal groups. In: Lecture Notes in Mathematics, vol. 443. Springer, Berlin (1975)
    • Lubin, J., Tate, J.: Formal complex multiplication in local fields. Ann. Math. (2) 81, 380–387 (1965)
    • Lurie, J.: Higher topos theory. In: Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009)
    • Quillen, D.: Higher algebraic K-theory. I. In: Lecture Notes in Mathematics, vol. 341, pp. 85–147. Springer (1973)
    • Scholze, P., Weinstein, J.: Berkeley lectures on p-adic geometry. Annals of Mathematics Studies, vol. 207. Princeton University Press, Princeton,...
    • Street, R.: Conspectus of variable categories. J. Pure Appl. Algebra 21(3), 307–338 (1981)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno