Ir al contenido

Documat


On invariant rational functions under rational transformations

  • Jason Bell [1] ; Rahim Moosa [1] ; Matthew Satriano [1]
    1. [1] University of Waterloo

      University of Waterloo

      Canadá

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-23
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00940-8
  • Enlaces
  • Resumen
    • Let X be an algebraic variety equipped with a dominant rational map φ : X X. A new quantity measuring the interaction of (X, φ) with trivial dynamical systems is introduced; the stabilised algebraic dimension of (X, φ) captures the maximum number of new algebraically independent invariant rational functions on (X × Y , φ × ψ), as ψ : Y Y ranges over all dominant rational maps on algebraic varieties. It is shown that this birational invariant agrees with the maximum dim X where (X, φ) (X , φ )is a dominant rational equivariant map andφ is part of an algebraic group action on X . As a consequence, it is deduced that if some cartesian power of (X, φ) admits a nonconstant invariant rational function, then already the second cartesian power does.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno