Ir al contenido

Documat


Trace operators on bounded subanalytic manifolds

  • Anna Valette [1] ; Guillaume Valette [2]
    1. [1] Katedra Teorii Optymalizacji i Sterowania, Wydział Matematyki i Informatyki Uniwersytetu Jagiello ´nskiego, Poland
    2. [2] Instytut Matematyki Uniwersytetu Jagiello ´nskiego, Poland
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-29
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00944-4
  • Enlaces
  • Referencias bibliográficas
    • Adams, R., Fournier, J.: Sobolev spaces, 2nd edn. Elsevier, New York (2009)
    • Basu, S., Pollack, R., Roy, M.-F.: Algorithms in real algebraic geometry. Springer, Berlin (2003)
    • Bierstone, E., Milman, P.D.: Semianalytic and subanalytic sets. Inst. Hautes Etudes. Publ. Math. No. 67, 5–42 (1988)
    • Boyer, F., Fabrie, P.: Mathematical tools for the study of the incompressible Navier–Stokes equations and related models. Applied Mathematical...
    • Coste, M.: An introduction to o-minimal geometry, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici...
    • McCrory, C.: Stratified general position, Algebraic and geometric topology, Springer Lecture Notes in Mathematics, No. 664, pp. 142–146. Springer,...
    • Van den Dries, L.: Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248. Cambridge University...
    • Denkowska, Z., Stasica, J.: Géométrie sous-analytique à la polonaise. Hermann, Éditeurs des sciences et des arts, Paris (2007)
    • Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19(2), 135–162 (1980)
    • Krantz, S.G., Parks, H.R.: Geometric integration theory. Birkhäuser, Boston (2008)
    • Kurdyka, K., Parusinski, A.: Quasi-convex decomposition in o-minimal structures. Application to the gradient conjecture. Adv. Stud. Pure Math....
    • Halupczok, I., Yin, Y.: Lipschitz stratifications in power-bounded o-minimal fields. J. Eur. Math. Soc. 20(11), 2717–2767 (2018)
    • Łojasiewicz, S.: Sur le problème de division. Stud. Math. 18(1), 87–136 (1959)
    • Łojasiewicz, S.: Ensembles semi-analytiques, IHES, 1965. https://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf
    • Mazya, V.: Sobolev spaces with applications to elliptic partial differential equations. Springer, Berlin (2011)
    • Mostowski, T.: Lipschitz equisingularity, Dissertationes Math., CCXLIII, 1985, PWN, Warszawa
    • Nguyen, N., Valette, G.: Lipschitz stratifications in o-minimal structures. Ann. Sci. École Norm. Sup. (4) 49(2), 399–421 (2016)
    • Parusiński, A.: Lipschitz stratification of subanalytic sets. Ann. Sci. École Norm. Sup. (4) 27(6), 661–696 (1994)
    • Valette, A.: Łojasiewicz inequality at singular points. Proc. Am. Math. Soc. 147, 1109–1117 (2019)
    • Valette, A., Valette, G.: Approximations in globally subanalytic and Denjoy–Carleman classes. Adv. Math. 385, 107764 (2021). https://doi.org/10.1016/j.aim.2021.107764
    • Valette, A., Valette, G.: Poincaré inequality on subanalytic sets. J. Geom. Anal. 31, 10464–10472 (2021)
    • Valette, A., Valette, G.: Uniform Poincaré inequality in o-minimal structures. Math. Inequalities Appl. 26, 141–150 (2023)
    • Valette, G.: Lipschitz triangulations. Ill. J. Math. 49(3), 953–979 (2005)
    • Valette, G.: Poincaré duality for Lp cohomology on subanalytic singular spaces. Math. Ann. 380, 789–823 (2021)
    • Valette, G.: On subanalytic geometry, survey. http://www2.im.uj.edu.pl/gkw/sub.pdf
    • Valette, G.: Regular vectors and bi-Lipschitz trivial stratifications in o-minimal structures. In: Cisneros-Molina, J.L., Dung Tráng, L.,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno