Ir al contenido

Documat


Triangulations of flow polytopes, ample framings, and gentle algebras

  • Matias von Bell [1] ; Benjamin Braun [1] ; Kaitlin Bruegge [2] ; Derek Hanely [3] ; Zachery Peterson [1] ; Khrystyna Serhiyenko [1] ; Martha Yip [1]
    1. [1] University of Kentucky

      University of Kentucky

      Estados Unidos

    2. [2] University of Cincinnati

      University of Cincinnati

      City of Cincinnati, Estados Unidos

    3. [3] Department of Mathematics, Penn State Behrend, Erie, USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-34
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00942-6
  • Enlaces
  • Resumen
    • The cone of nonnegative flows for a directed acyclic graph (DAG) is known to admit regular unimodular triangulations induced by framings of the DAG. These triangulations restrict to triangulations of the flow polytope for strength one flows, which are called DKK triangulations. For a special class of framings called ample framings, these triangulations of the flow cone project to a complete fan. We characterize the DAGs that admit ample framings, and we enumerate the number of ample framings for a fixed DAG. We establish a connection between maximal simplices in DKK triangulations and τ -tilting posets for certain gentle algebras, which allows us to impose a poset structure on the dual graph of any DKK triangulation for an amply framed DAG. Using this connection, we are able to prove that for full DAGs, i.e., those DAGs with inner vertices having in-degree and out-degree equal to two, the flow polytopes are Gorenstein and have unimodal Ehrhart h∗-polynomials.

  • Referencias bibliográficas
    • Adachi, T., Iyama, O., Reiten, I.: τ-tilting theory. Compos. Math. 150(3), 415–452 (2014)
    • Assem, I., Skowroński, A.: Iterated tilted algebras of type 𝐴~𝑛A~ n Math. Z. 195(2), 269–290 (1987)
    • Athanasiadis, C.: Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture of Stanley. J. Reine Angew. Math. 2005, 01 (2004)
    • Ayyer, A., Josuat-Vergès, M., Ramassamy, S.: Extensions of partial cyclic orders and consecutive coordinate polytopes. Ann. Henri Lebesgue...
    • Baldoni, W., Vergne, M.: Kostant partitions functions and flow polytopes. Transform. Groups 13(3–4), 447–469 (2008)
    • Barnard, E., Carroll, A., Zhu, S.: Minimal inclusions of torsion classes. Algebr. Comb. 2(5), 879–901 (2019)
    • Barnard, E., Todorov, G., Zhu, S.: Dynamical combinatorics and torsion classes. J. Pure Appl. Algebra 225(9), 106642 (2021)
    • Beck, M., Robins, S.: Computing the continuous discretely. In: Undergraduate Texts in Mathematics (2nd edn.), Springer, Berlin (2007)
    • Bell von, M., González D’León, R.S., Mayorga Cetina, F.A., Yip, M.: A unifying framework for the ν-Tamari lattice and principal order ideals...
    • Bruns, W., Römer, T.: h-vectors of Gorenstein polytopes. J. Comb. Theory. Ser. A 114, 65–76 (2007)
    • Brüstle, T., Douville, G., Mousavand, K., Thomas, H., Yıldırım, E.: On the combinatorics of gentle algebras. Can. J. Math. 72(6), 1551–1580...
    • Butler, M.C.R., Claus Michael, R.: Auslander-Reiten sequences with few middle terms and applications to string algebras. Comm. Algebra 15(1–2),...
    • Conforti, M., Cornuéjols, G., Zambelli, G., et al.: Integer Programming, vol. 271. Springer, Berlin (2014)
    • Danilov, V.I., Karzanov, A.V., Koshevoy, G.A: Coherent fans in the space of flows in framed graphs. In24th International Conference on Formal...
    • Demonet, L., Iyama, O., Jasso, G.: τ-tilting finite algebras, bricks, and g-vectors. Int. Math. Res. Not. IMRN 2019(3), 852–892 (2019)
    • Demonet, L., Iyama, O., Reading, N., Reiten, I., Thomas, H.: Lattice theory of torsion classes. arXiv:1711.01785
    • Ehrhart, E.: Sur les polyèdres rationnels homothétiques à n dimensions. C. R. Acad. Sci. Paris 254, 616–618 (1962)
    • Escobar, L., Mészáros, K.: Toric matrix Schubert varieties and their polytopes. Proc. Amer. Math. Soc. 144(12), 5081–5096 (2016)
    • D’León, R.S.G., Rafael, S., Hanusa Christopher, R.H., Yip, M.: Column-convex matrices, G-cyclic orders, and flow polytopes. Discrete Comput....
    • Haiden, F., Katzarkov, L., Kontsevich, M.: Flat surfaces and stability structures. Publ. Math. Inst. Hautes Études Sci. 126, 247–318 (2017)
    • Lekili, Y., Polishchuk, A.: Derived equivalences of gentle algebras via Fukaya categories. Math. Ann. 376(1–2), 187–225 (2020)
    • Liu, R.I., Mészáros, K., St Dizier, A.: Gelfand-Tsetlin polytopes: a story of flow and order polytopes. SIAM J. Discrete Math. 33(4), 2394–2415...
    • Liu, R.I., Morales, A.H., Mészáros, K.: Flow polytopes and the space of diagonal harmonics. Can. J. Math. 71(6), 1495–1521 (2019)
    • Mészáros, K., Morales, A.H.: Volumes and Ehrhart polynomials of flow polytopes. Math. Z. 293(3–4), 1369–1401 (2019)
    • Mészáros, K., St Dizier, A.: From generalized permutahedra to Grothendieck polynomials via flow polytopes. Algebr. Comb. 3(5), 1197–1229 (2020)
    • Opper, S., Plamondon, P-G., Schroll, S.: A geometric model for the derived category of gentle algebras. arXiv:1801.09659
    • Palu, Y., Pilaud, V., Plamondon, P.G.: Non-kissing Complexes and Tau-Tilting for Gentle Algebras. American Mathematical Society, vol. 274,...
    • Kyle Petersen, T., Pylyavskyy, P., Speyer, D.E.: A non-crossing standard monomial theory. J. Algebra 324(5), 951–969 (2010)
    • Stanley, R.P.: Hilbert functions of graded algebras. Adv. Math. 28(1), 57–83 (1978)
    • Stanley, R.P: Decompositions of rational convex polytopes. Ann. Discrete Math., 6, 333–342,: Combinatorial mathematics, optimal designs and...
    • Stanley, R.P.: Enumerative combinatorics volume 1 second edition. In: Cambridge Studies in Advanced Mathematics (2011)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno