Ir al contenido

Documat


Tilted biorthogonal ensembles, Grothendieck random partitions, and determinantal tests

  • Svetlana Gavrilova [2] ; Leonid Petrov [1]
    1. [1] University of Virginia

      University of Virginia

      Estados Unidos

    2. [2] HSE University, Moscow, Russia
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-51
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00945-3
  • Enlaces
  • Resumen
    • We study probability measures on partitions based on symmetric Grothendieck polynomials. These deformations of Schur polynomials introduced in the K-theory of Grassmannians share many common properties. Our Grothendieck measures are analogs of the Schur measures on partitions introduced by Okounkov (Sel Math 7(1):57–81, 2001). Despite the similarity of determinantal formulas for the probability weights of Schur and Grothendieck measures, we demonstrate that Grothendieck measures are not determinantal point processes. This question is related to the principal minor assignment problem in algebraic geometry, and we employ a determinantal test first obtained by Nanson in 1897 for the 4 × 4 problem. We also propose a procedure for getting Nanson-like determinantal tests for matrices of any size n ≥ 4, which appear new for n ≥ 5. By placing the Grothendieck measures into a new framework of tilted biorthogonal ensembles generalizing a rich class of determinantal processes introduced by Borodin (Nucl Phys B 536:704–732, 1998), we identify Grothendieck random partitions as a cross-section of a Schur process, a determinantal process in two dimensions. This identification expresses the correlation functions of Grothendieck measures through sums of Fredholm determinants, which are not immediately suitable for asymptotic analysis. A more direct approach allows us to obtain a limit shape result for the Grothendieck random partitions. The limit shape curve is not particularly explicit as it arises as a cross-section of the limit shape surface for the Schur process. The gradient of this surface is expressed through the argument of a complex root of a cubic equation.

  • Referencias bibliográficas
    • Al Ahmadieh, A., & Vinzant, C. (2021). Characterizing principal minors of symmetric matrices via determinantal multiaffine polynomials....
    • Al Ahmadieh, A., & Vinzant, C. (2022). Determinantal representations and the image of the principal minor map. arXiv preprint, arXiv:2205.05267...
    • Aggarwal, A., Borodin, A., Petrov, L., & Wheeler, M. (2023). Free fermion six vertex model: symmetric functions and random Domino Tilings....
    • Aggarwal, A., Borodin, A., & Wheeler, M. (2021). Colored fermionic vertex models and symmetric functions. arXiv preprint, arXiv:2101.01605...
    • Ahn, A. (2020). Global universality of Macdonald plane partitions. Annales de l'Institut Henri Poincaré, 56(3), 1641–1705. arXiv:1809.02698...
    • Betea, D., Boutillier, C., Bouttier, J., Chapuy, G., Corteel, S., & Vuletić, M. (2017). Perfect sampling algorithm for Schur processes....
    • Borodin, A., & Corwin, I. (2014). Macdonald processes. Probability Theory and Related Fields, 158, 225–400. arXiv:1111.4408 [math.PR].
    • Borodin, A., Corwin, I., & Sasamoto, T. (2014). From duality to determinants for q-TASEP and ASEP. Annals of Probability, 42(6), 2314–2382....
    • Baik, J., Deift, P., & Johansson, K. (1999). On the distribution of the length of the longest increasing subsequence of random permutations....
    • Borodin, A., & Ferrari, P. (2014). Anisotropic growth of random surfaces in 2+1 dimensions. Communications in Mathematical Physics,...
    • Borodin, A., Ferrari, P., Prähofer, M., & Sasamoto, T. (2007). Fluctuation properties of the TASEP with periodic initial configuration....
    • Borodin, A., & Gorin, V. (2015). General β-Jacobi corners process and the Gaussian Free Field. Communications in Pure and Applied Mathematics,...
    • Borodin, A., & Gorin, V. (2016). Lectures on integrable probability. In Probability and Statistical Physics in St. Petersburg (pp. 155–214)....
    • Baik, J., & Liu, Z. (2017). Fluctuations of TASEP on a ring in relaxation time scale. Communications in Pure and Applied Mathematics....
    • Bufetov, A., & Matveev, K. (2018). Hall–Littlewood RSK field. Selecta Mathematica, 24(5), 4839–4884. arXiv:1705.07169 [math.PR].
    • Borodin, A., Okounkov, A., & Olshanski, G. (2000). Asymptotics of Plancherel measures for symmetric groups. Journal of the American Mathematical...
    • Borodin, A. (2007). Periodic Schur process and cylindric partitions. Duke Mathematical Journal, 140(3), 391–468. arXiv /0601019 [math.CO].
    • Borodin, A. (2011). Determinantal point processes. In Oxford Handbook of Random Matrix Theory.
    • Borodin, A. (2011). Schur dynamics of the Schur processes. Advances in Mathematics, 228(4), 2268–2291. arXiv:1001.3442 [math.CO].
    • Borodin, A. (2017). On a family of symmetric rational functions. Advances in Mathematics, 306, 973–1018. arXiv:1410.0976 [math.CO].
    • Borodin, A. (1998). Biorthogonal ensembles. Nuclear Physics B, 536, 704–732. arXiv /9804027 [math.CA].
    • Borodin, A., & Petrov, L. (2014). Integrable probability: from representation theory to Macdonald processes. Probability Surveys, 11,...
    • Bufetov, A., & Petrov, L. (2015). Law of large numbers for infinite random matrices over a finite field. Selecta Mathematica, 21(4), 1271–1338....
    • Borodin, A., Petrov, L. (2016). Lectures on integrable probability: stochastic vertex models and symmetric functions. In Lecture Notes of...
    • Borodin, A., & Petrov, L. (2016). Nearest neighbor Markov dynamics on Macdonald processes. Advances in Mathematics, 300, 71–155. arXiv:1305.5501...
    • Borodin, A., & Rains, E.M. (2005). Eynard–Mehta theorem, Schur process, and their Pfaffian analogs. Journal of Statistical Physics, 121(3),...
    • Buch, A.S. (2002). A Littlewood–Richardson rule for the K-theory of Grassmannians. Acta Mathematica, 189(1), 37–78. arXiv /0004137 [math.AG].
    • Borodin, A., & Wheeler, M. (2017). Spin q-Whittaker polynomials. arXiv preprint, arXiv:1701.06292 [math.CO].
    • Borodin, A., & Wheeler, M. (2022). Colored stochastic vertex models and their spectral theory. Astérisque, 437. arXiv:1808.01866 [math.PR].
    • Corwin, I., O’Connell, N., Seppäläinen, T., & Zygouras, N. (2014). Tropical combinatorics and Whittaker functions. Duke Mathematical Journal,...
    • Chan, M., & Pflueger, N. (2021). Combinatorial relations on skew Schur and skew stable Grothendieck polynomials. Algebraic Combinatorics,...
    • de Gier, J., Kenyon, R., & Watson, S. (2021). Limit shapes for the asymmetric five vertex model. Communications in Mathematical Physics,...
    • Duits, M. (2013). The Gaussian free field in an interlacing particle system with two jump rates. Communications in Pure and Applied Mathematics,...
    • Eynard, B., & Mehta, M.L. (1998). Matrices coupled in a chain: I. Eigenvalue correlations. Journal of Physics A, 31, 4449–4456.
    • Fomin, S., & Kirillov, A.N. (1994). Grothendieck polynomials and the Yang–Baxter equation. In Proceedings of the Sixth Conference in Formal...
    • Fulton, W. (1997). Young Tableaux with Applications to Representation Theory and Geometry. Cambridge University Press, Cambridge.
    • Gorin, V. (2008). Nonintersecting paths and the Hahn orthogonal polynomial ensemble. Functional Analysis and Its Applications, 42(3), 180–197....
    • Gavrilova, S., & Petrov, L. (2023). Grothendieck limit shape plots code. Available at https://github.com/lenis2000/GrothendieckLimitShapes/underApacheLicense2.0...
    • Griffin, K., & Tsatsomeros, M.J. (2006). Principal minors. Part II: The principal minor assignment problem. Linear Algebra and its Applications,...
    • Gessel, I., & Viennot, G. (1985). Binomial determinants, paths, and hook length formulae. Advances in Mathematics, 58(3), 300–321.
    • Hwang, B.-H., Jang, J., Kim, J. S., Song, M., & Song, U.-K. (2021). Refined canonical stable Grothendieck polynomials and their duals....
    • Holtz, O., & Schneider, H. (2002). Open problems on GKK τ-matrices. Linear Algebra and its Applications, 345(1–3), 263–267. arXiv /0109030...
    • Holtz, O., & Sturmfels, B. (2007). Hyperdeterminantal relations among symmetric principal minors. Journal of Algebra, 316(2), 634–648....
    • Imamura, T., Mucciconi, M., & Sasamoto, T. (2021). Skew RSK dynamics: Greene invariants, affine crystals and applications to q-Whittaker...
    • Ivanov, V., & Olshanski, G. (2002). Kerov’s central limit theorem for the Plancherel measure on Young diagrams. In Symmetric Functions...
    • Johansson, K. (2000). Random growth and random matrices. In European Congress of Mathematics, Vol. I (Barcelona, 2000), 201, 445–456.
    • Johansson, K. (2001). Discrete orthogonal polynomial ensembles and the Plancherel measure. Annals of Mathematics, 153(1), 259–296. arXiv /9906120...
    • Kenyon, R. (2020). On the 5-Vertex Model. Talk at the IPAM conference “Asymptotic Algebraic Combinatorics”. Available at http://www.ipam.ucla.edu/abstract/?tid=15991&pcode=AAC2020.
    • Kerov, S. (2003). Asymptotic representation theory of the symmetric group and its applications in analysis (Vol. 219). American Mathematical...
    • Kumar, S., & Halder, D. (2017). Cubic equation solver. Available at https://github.com/shril/CubicEquationSolverunderApacheLicense2.0...
    • Knuth, D. (1970). Permutations, matrices, and generalized Young tableaux. Pacific Journal of Mathematics, 34(3), 709–727.
    • Kenyon, R., & Okounkov, A. (2007). Limit shapes and the complex Burgers equation. Acta Mathematica, 199(2), 263–302. arXiv /0507007.
    • Knizel, A., Petrov, L., & Saenz, A. (2019). Generalizations of TASEP in discrete and continuous inhomogeneous space. Communications in...
    • Lindström, B. (1973). On the vector representations of induced matroids. Bulletin of the London Mathematical Society, 5(1), 85–90.
    • Loewy, R. (1986). Principal minors and diagonal similarity of matrices. Linear Algebra and its Applications, 78, 23–64.
    • Lin, S., & Sturmfels, B. (2009). Polynomial relations among principal minors of a 4 × 4 4×4-matrix. Journal of Algebra, 322(11), 4121–4131....
    • Logan, B.F., & Shepp, L.A. (1977). A variational problem for random Young tableaux. Advances in Mathematics, 26(2), 206–222.
    • Lascoux, A., & Schützenberger, M.-P. (1982). Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété...
    • MacMahon, P.A. (1894). A certain class of generating functions in the theory of numbers. Philosophical Transactions of the Royal Society of...
    • Macdonald, I.G. (1995). Symmetric Functions and Hall Polynomials (2nd ed.). Oxford University Press.
    • Mantelos, C.S. (2023). Classification of transformations of equivalent kernels of some determinantal point processes. arXiv preprint, arXiv:2302.02471...
    • Matveev, K., & Petrov, L. (2017). 𝑞 q-randomized Robinson–Schensted–Knuth correspondences and random polymers. Annales de l'Institut...
    • Matetski, K., Quastel, J., & Remenik, D. (2021). The KPZ fixed point. Acta Mathematica, 227(1), 115–203. arXiv:1701.00018 [math.PR].
    • Muir, T. (1894). LXII. On the expressibility of a determinant in terms of its coaxial minors. Philosophical Magazine, 38(235), 537–541.
    • Muir, T. (1898). The relations between the coaxial minors of a determinant of the fourth order. Transactions of the Royal Society of Edinburgh,...
    • Nanson, E.J. (1897). XLVI. On the relations between the coaxial minors of a determinant. Philosophical Magazine, 44(269), 362–367.
    • O’Connell, N. (2012). Directed polymers and the quantum Toda lattice. Annals of Probability, 40(2), 437–458. arXiv:0910.0069 [math.PR].
    • Oeding, L. (2011). Set-theoretic defining equations of the variety of principal minors of symmetric matrices. Algebra and Number Theory, 5(1),...
    • Okounkov, A. (2000). Random matrices and random permutations. International Mathematics Research Notices, 2000(20), 1043–1095. arXiv /9903176...
    • Okounkov, A. (2001). Infinite wedge and random partitions. Selecta Mathematica, 7(1), 57–81. arXiv /9907127 [math.RT].
    • Okounkov, A. (2002). Symmetric functions and random partitions. In Symmetric functions 2001: Surveys of developments and perspectives. arXiv /0309074...
    • Okounkov, A. (2006). The uses of random partitions. XIVth International Congress on Mathematical Physics, 379–403. arXiv /0309015.
    • Okounkov, A., & Reshetikhin, N. (2003). Correlation function of Schur process with application to local geometry of a random 3-dimensional...
    • Okounkov, A., & Reshetikhin, N. (2007). Random skew plane partitions and the Pearcey process. Communications in Mathematical Physics,...
    • O’Connell, N., Seppäläinen, T., & Zygouras, N. (2014). Geometric RSK correspondence, Whittaker functions and symmetrized random polymers....
    • Petrov, L. (2011). Determinantal Tests. Unpublished note.
    • Petrov, L. (2014). Asymptotics of Random Lozenge Tilings via Gelfand-Tsetlin Schemes. Probability Theory and Related Fields, 160(3), 429–487....
    • Priezzhev, V.B. (2003). Exact nonstationary probabilities in the asymmetric exclusion process on a ring. Physical Review Letters, 91(5), 050601....
    • Soshnikov, A. (2000). Determinantal random point fields. Russian Mathematical Surveys, 55(5), 923–975. arXiv /0002099 [math.PR].
    • Stevens, M. (2021). Equivalent symmetric kernels of determinantal point processes. Random Matrices: Theory and Applications, 10(03), 2150027....
    • Stouffer, E.B. (1924). On the independence of principal minors of determinants. Transactions of the American Mathematical Society, 26(3),...
    • Tracy, C., & Widom, H. (1998). Correlation functions, cluster functions, and spacing distributions for random matrices. Journal of Statistical...
    • Vershik, A.M., & Kerov, S.V. (1977). Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux....
    • Yeliussizov, D. (2017). Duality and deformations of stable Grothendieck polynomials. Journal of Algebraic Combinatorics, 45(1), 295–344. arXiv:1601.01581...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno