Ir al contenido

Documat


A shrinking-target problem in the space of unimodular lattices in the three dimensional Euclidean space

  • Reynold Fregoli [1] ; Cheng Zheng [2]
    1. [1] University of Michigan–Ann Arbor

      University of Michigan–Ann Arbor

      City of Ann Arbor, Estados Unidos

    2. [2] School of Mathematical Sciences, China
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-62
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00948-0
  • Enlaces
  • Resumen
    • In this paper, we study the shrinking-target problem with target at infinity induced by the injectivity radius function under the action of a regular diagonalizable flow on SL3(R)/ SL3(Z). In particular, we establish an explicit formula for the Hausdorff dimension of the subset of points p whose orbit approaches the cusp infinitely often with a rate γ ≥ 0.

  • Referencias bibliográficas
    • Aka, M., Einsiedler, M., Shapira, U.: Integer points on spheres and their orthogonal lattices. Invent. Math. 206(2), 379–396 (2016)
    • Athreya, J.S., Margulis, G.A.: Logarithm laws for unipotent flows. I. J. Mod. Dyn. 3(3), 359–378 (2009)
    • Besicovitch, A.S.: Sets of fractional dimensions (IV): on rational approximation to real numbers. J. Lond. Math. Soc. 9(2), 126–131 (1934)
    • Borel, A.: Introduction aux groupes arithmétiques. Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités...
    • Borel, A.: Linear Algebraic Groups, Volume 126 of Graduate Texts in Mathematics, 12th edn. Springer, New York (1991)
    • Borel, A., Harish-Chandra: Arithmetic subgroups of algebraic groups. Ann. Math. 2(75), 485–535 (1962)
    • Bovey, J.D., Dodson, M.M.: The Hausdorff dimension of systems of linear forms. Acta Arith. 45(4), 337–358 (1986)
    • Dani, S.G.: Divergent trajectories of flows on homogeneous spaces and Diophantine approximation. J. Reine Angew. Math. 359, 55–89 (1985)
    • Das, T., Fishman, L., Simmons, D., Urbański, M.: A variational principle in the parametric geometry of numbers, with applications to metric...
    • Das, T., Fishman, L., Simmons, D., Urbański, M.: A variational principle in the parametric geometry of numbers. Adv. Math. 437, 109435 (2024)
    • Dodson, M.M.: Hausdorff dimension, lower order and Khintchine’s theorem in metric Diophantine approximation. J. Reine Angew. Math. 432, 69–76...
    • Fishman, L., Mance, B., Simmons, D., Urbański, M.: Shrinking targets for nonautonomous dynamical systems corresponding to Cantor series expansions....
    • Ghosh, A., Kelmer, D.: Shrinking targets for semisimple groups. Bull. Lond. Math. Soc. 49(2), 235–245 (2017)
    • Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford University Press, Oxford (1960)
    • Hersonsky, S., Paulin, F.: Hausdorff dimension of Diophantine geodesics in negatively curved manifolds. J. Reine Angew. Math. 539, 29–43 (2001)
    • Hersonsky, S., Paulin, F.: Diophantine approximation for negatively curved manifolds. Math. Z. 241(1), 181–226 (2002)
    • Hersonsky, S., Paulin, F.: Diophantine approximation in negatively curved manifolds and in the Heisenberg group. In: Rigidity in dynamics...
    • Hill, R., Velani, S.L.: The ergodic theory of shrinking targets. Invent. Math. 119(1), 175–198 (1995)
    • Hill, R., Velani, S.L.: Metric Diophantine approximation in Julia sets of expanding rational maps. Inst. Hautes Études Sci. Publ. Math. 85,...
    • Howroyd, J.D.: On Hausdorff and packing dimension of product spaces. Math. Proc. Camb. Philos. Soc. 119(4), 715–727 (1996)
    • Jarník, V.: Über die simultanen diophantischen Approximationen. Math. Z. 33(1), 505–543 (1931)
    • Kelmer, D., Hee, O.: Shrinking targets for the geodesic flow on geometrically finite hyperbolic manifolds. J. Mod. Dyn. 17, 401–434 (2021)
    • Kelmer, D., Shucheng, Yu.: Shrinking target problems for flows on homogeneous spaces. Trans. Am. Math. Soc. 372(9), 6283–6314 (2019)
    • Khintchine, A.: Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen. Math. Ann. 92(1–2), 115–125...
    • Khintchine, A.: Zur metrischen Theorie der diophantischen Approximationen. Math. Z. 24(1), 706–714 (1926)
    • Kleinbock, D.Y., Margulis, G.A.: Bounded orbits of nonquasiunipotent flows on homogeneous spaces. In: Sina˘ı’s Moscow Seminar on Dynamical...
    • Kleinbock, D.Y., Margulis, G.A.: Logarithm laws for flows on homogeneous spaces. Invent. Math. 138(3), 451–494 (1999)
    • Kleinbock, D., Zhao, X.: An application of lattice points counting to shrinking target problems. Discrete Contin. Dyn. Syst. 38(1), 155–168...
    • Li, B., Wang, B.-W., Jun, W., Jian, X.: The shrinking target problem in the dynamical system of continued fractions. Proc. Lond. Math. Soc....
    • Marstrand, J.M.: The dimension of Cartesian product sets. Proc. Camb. Philos. Soc. 50, 198–202 (1954)
    • McMullen, C.: Area and Hausdorff dimension of Julia sets of entire functions. Trans. Am. Math. Soc. 300(1), 329–342 (1987)
    • Melián, M.V., Pestana, D.: Geodesic excursions into cusps in finite-volume hyperbolic manifolds. Michigan Math. J. 40(1), 77–93 (1993)
    • Raghunathan, M.S.: Discrete subgroups of Lie groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. Springer, New York, Heidelberg...
    • Reeve, H.W.J.: Shrinking targets for countable Markov maps. arxiv:1107.4736
    • Shen, L.M., Wang, B.W.: Shrinking target problems for beta-dynamical system. Sci. China Math. 56(1), 91–104 (2013)
    • Sullivan, D.: Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics. Acta Math. 149(3–4), 215–237...
    • Tricot, C., Jr.: Two definitions of fractional dimension. Math. Proc. Camb. Philos. Soc. 91(1), 57–74 (1982)
    • Tseng, J.: On circle rotations and the shrinking target properties. Discrete Contin. Dyn. Syst. 20(4), 1111–1122 (2008)
    • Urbański, M.: The Hausdorff dimension of the set of points with nondense orbit under a hyperbolic dynamical system. Nonlinearity 4(2), 385–397...
    • Urbański, M.: Diophantine analysis of conformal iterated function systems. Monatsh. Math. 137(4), 325–340 (2002)
    • Zheng, C.: On the density of some sparse horocycles. Proc. Indian Acad. Sci. Math. Sci., 134, Paper No. 6 (2024)
    • Zheng, C.: Sparse equidistribution of unipotent orbits in finite-volume quotients of PSL(2, R). J. Mod. Dyn. 10, 1–21 (2016)
    • Zheng, C.: A shrinking target problem with target at infinity in rank one homogeneous spaces. Monatsh. Math. 189(3), 549–592 (2019)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno