Ir al contenido

Documat


On the local-global principle for isogenies of abelian surfaces

  • Davide Lombardo [1] ; Matteo Verzobio [2]
    1. [1] University of Pisa

      University of Pisa

      Pisa, Italia

    2. [2] IST Austria, Austria
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 2, 2024, 68 págs.
  • Idioma: inglés
  • DOI: 10.1007/s00029-023-00908-0
  • Enlaces
  • Resumen
    • Let ɭ a prime number. We classify the subgroups G of Sp4(F) and GSp4(F) that act irreducibly on F4 , but such that every element of G fixes an F-vector subspace of dimension 1. We use this classification to prove that a local-global principle for isogenies of degree ɭ between abelian surfaces over number fields holds in many cases—in particular, whenever the abelian surface has non-trivial endomorphisms and ɭ is large enough with respect to the field of definition. Finally, we prove that there exist arbitrarily large primes ɭ for which some abelian surface A/Q fails the local-global principle for isogenies of degree ɭ.

  • Referencias bibliográficas
    • Anni, S.: A local-global principle for isogenies of prime degree over number fields. J. Lond. Math. Soc. (2) 89(3), 745–761 (2014)
    • Banwait, B.S.: Examples of abelian surfaces failing the local-global principle for isogenies. Res. Number Theory 7(3), 55 (2021)
    • Banwait, B.S., Cremona, J.: Tetrahedral elliptic curves and the local-global principle for isogenies. Algebra Number Theory 8(5), 1201–1229...
    • Bray, J.N., Holt, D.F., Roney-Dougal, C.M.: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups. London Mathematical Society...
    • Chi, W.: On the Tate modules of absolutely simple abelian varieties of type II. Bull. Inst. Math. Acad. Sin. 18, 85–95 (1990)
    • Cullinan, J.: Symplectic stabilizers with applications to abelian varieties. Int. J. Number Theory 8(2), 321–334 (2012)
    • Dickson, L.E.: Linear groups: With an Exposition of the Galois Field Theory. B. G. Teubner, Stuttgart (1901)
    • Fité, F., Kedlaya, K.S., Rotger, V., Sutherland, A.V.: Sato–Tate distributions and Galois endomorphism modules in genus 2. Compos. Math. 148(5),...
    • Grothendieck, A.: Modèles de Néron et monodromie. Sém. de Géom. 7, Exposé IX, Lecture Notes in Mathematics, vol. 288 (1971)
    • Grothendieck, A., Raynaud, M., Rim, D. S.: Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Mathematics, vol. 288, Springer-Verlag...
    • Hindry, M., Ratazzi, N.: Points de torsion sur les variétés abéliennes de type GSp. J. Inst. Math. Jussieu 11(1), 27–65 (2012)
    • Katz, N.M.: Galois properties of torsion points on abelian varieties. Invent. Math. 62(3), 481–502 (1981)
    • Kiming, I.: Explicit classifications of some 2-extensions of a field of characteristic different from 2. Can. J. Math. 42(5), 825–855 (1990)
    • Lombardo, D.: An explicit open image theorem for products of elliptic curves. J. Number Theory 168, 386–412 (2016)
    • Lombardo, D.: Explicit surjectivity of Galois representations for abelian surfaces and GL2-varieties. J. Algebra 460, 26–59 (2016)
    • Lombardo, D.: On the -adic Galois representations attached to nonsimple abelian varieties. Ann. Inst. Fourier (Grenoble) 66(3), 1217–1245...
    • Lombardo, D.: Galois representations attached to abelian varieties of CM type. Bull. Soc. Math. France 145(3), 469–501 (2017)
    • Larson, E., Vaintrob, D.: Determinants of subquotients of Galois representations associated with abelian varieties. J. Inst. Math. Jussieu...
    • Lombardo, D., Verzobio, M.: Computations with Hasse subgroups. https://github.com/DavideLombardoMath/local-global-surfaces (2022)
    • Milne, J.S.: Abelian Varieties, Arithmetic Geometry (Storrs, Conn., 1984), pp. 103–150. Springer, New York (1986)
    • Odlyzko, A.M.: Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent...
    • Raynaud, M.: Schémas en groupes de type (p,..., p). Bull. Soc. Math. France 102, 241–280 (1974)
    • Ribet, K.A.: Galois action on division points of abelian varieties with real multiplications. Am. J. Math. 98(3), 751–804 (1976)
    • Ribet, K.A.: Hodge classes on certain types of abelian varieties. Am. J. Math. 105, 523–538 (1983)
    • Rémond, G.: Conjectures uniformes sur les variétés abéliennes. Q. J. Math. 69(2), 459–486 (2018)
    • Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(4), 259–331 (1972)
    • Serre, J.-P.: Représentations linéaires des groupes finis, 5th edn. Hermann, Paris (1998)
    • Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. Math. (2) 88, 492–517 (1968)
    • Sutherland, A.V.: A local-global principle for rational isogenies of prime degree. J. Théor. Nr. Bordx. 24(2), 475–485 (2012)
    • Silverberg, A., Zarhin, Y.G.: Inertia groups and abelian surfaces. J. Number Theory 110(1), 178–198 (2005)
    • Vogt, I.: A local-global principle for isogenies of composite degree. Proc. Lond. Math. Soc. (3) 121(6), 1496–1530 (2020)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno