Ir al contenido

Documat


Wronskians, total positivity, and real Schubert calculus

  • Steven N. Karp [1]
    1. [1] University of Notre Dame

      University of Notre Dame

      Township of Portage, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 1, 2024, 28 págs.
  • Idioma: inglés
  • DOI: 10.1007/s00029-023-00888-1
  • Enlaces
  • Resumen
    • A complete flag in Rn is a sequence of nested subspaces V1 ⊂ ··· ⊂ Vn−1 such that each Vk has dimension k. It is called totally nonnegative if all its Plücker coordinates are nonnegative. We may view each Vk as a subspace of polynomials in R[x] of degree at most n − 1, by associating a vector (a1,..., an) in Rn to the polynomial a1 + a2x +···+ an xn−1. We show that a complete flag is totally nonnegative if and only if each of its Wronskian polynomials Wr(Vk ) is nonzero on the interval (0,∞). In the language of Chebyshev systems, this means that the flag forms a Markov system or ECT -system on (0,∞). This gives a new characterization and membership test for the totally nonnegative flag variety. Similarly, we show that a complete flag is totally positive if and only if each Wr(Vk ) is nonzero on [0,∞]. We use these results to show that a conjecture of Eremenko (Arnold Math J 1(3):339–342, 2015) in real Schubert calculus is equivalent to the following conjecture: if V is a finite-dimensional subspace of polynomials such that all complex zeros of Wr(V) lie in the interval (−∞, 0), then all Plücker coordinates of V are real and positive. This conjecture is a totally positive strengthening of a result of Mukhin, Tarasov, and Varchenko. (J Am Math Soc 22(4):909–940, 2009), and can be reformulated as saying that all complex solutions to a certain family of Schubert problems in the Grassmannian are real and totally positive. We also show that our conjecture is equivalent to a totally positive version of the secant conjecture of Sottile (2003).

  • Referencias bibliográficas
    • Arkani-Hamed, N., Bai, Y., Lam, T.: Positive geometries and canonical forms. J. High Energy Phys. (11):039, front matter+121 (2017)
    • Bloch, A.M., Karp, S.N.: On two notions of total positivity for partial flag varieties. Adv. Math., 414 No. 108855, 24 (2023)
    • Coppel, W.A.: Disconjugacy. Lecture Notes in Mathematics, vol. 220. Springer-Verlag, Berlin-New York (1971)
    • Eremenko, A., Gabrielov, A.: Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry....
    • Eremenko, A., Gabrielov, A., Shapiro, M., Vainshtein, A.: Rational functions and real Schubert calculus. Proc. Am. Math. Soc. 134(4), 949–957...
    • Eremenko, A.: Disconjugacy and the secant conjecture. Arnold Math. J. 1(3), 339–342 (2015)
    • Eremenko, A.: (user 25510). Three real polynomials. MathOverflow, version of (May 20, 2019). https://mathoverflow.net/q/332011
    • Fallat, S.M.: Bidiagonal factorizations of totally nonnegative matrices. Am. Math. Mon. 108(8), 697–712 (2001)
    • Fraser, C.: Unpublished notes
    • Fomin, S., Williams, L., Zelevinsky, A.: Introduction to cluster algebras. Chapters 1-3. arXiv:1608.05735
    • Fomin, S., Zelevinsky, A.: Total positivity: tests and parametrizations. Math. Intell. 22(1), 23–33 (2000)
    • Gantmacher, F.R.: The theory of matrices. Vols. 1, 2. Translated by K. A. Hirsch. Chelsea Publishing Co., New York (1959)
    • García-Puente, L.D., Hein, N., Hillar, C., Martín del Campo, A., Ruffo, J., Sottile, F., Teitler, Z.: The secant conjecture in the real Schubert...
    • Gantmaher, F.R., Krein, M.G.: Oscillyacionye matricy i yadra i malye kolebaniya mehaniˇceskih sistem. Gosudarstv. Isdat. Tehn.-Teor. Lit.,...
    • Gantmacher, F.P., Krein, M.G.: Oscillation matrices and kernels and small vibrations of mechanical systems. AMS Chelsea Publishing, Providence,...
    • Galashin, P., Karp, S.N., Lam, T.: Regularity theorem for totally nonnegative flag varieties. J. Am. Math. Soc. 35(2), 513–579 (2022)
    • Hartman, P.: Unrestricted n-parameter families. Rend. Circ. Mat. Palermo 2(7), 123–142 (1958)
    • Hartman, P.: Principal solutions of disconjugate n-th order linear differential equations. Am. J. Math. 91(2), 306–362 (1969)
    • Hillar, C., García-Puente, L., Martín del Campo, A., Ruffo, J., Teitler, Z., Johnson, S.L., Sottile, F.: Experimentation at the frontiers...
    • Karp, S.N.: Sign variation, the Grassmannian, and total positivity. J. Combin. Theory Ser. A 145, 308–339 (2017)
    • Kre˘ın, M.G., Nudel’man, A.A.: Problema momentov Markova i ekstremalnye zadachi. Izdat. “Nauka”, Moscow (1973). Translated into English by...
    • Kre˘ın, M.G., Nudel’man, A.A.: The Markov moment problem and extremal problems. American Mathematical Society, Providence, R.I. (1977). Translated...
    • Karlin, S., Studden, W.J.: Tchebycheff systems: with applications in analysis and statistics. Pure and Applied Mathematics, Vol. XV. Interscience...
    • Kulpa, W.: The Poincaré–Miranda theorem. Am. Math. Mon. 104(6), 545–550 (1997)
    • Levinson, J., Purbhoo, K.: A topological proof of the Shapiro–Shapiro conjecture. Invent. Math. 226(2), 521–578 (2021)
    • Lusztig, G.: Total positivity in reductive groups. In Lie theory and geometry, volume 123 of Progr. Math., pp. 531–568. Birkhäuser Boston,...
    • Lusztig, G.: Total positivity in partial flag manifolds. Represent. Theory 2, 70–78 (1998)
    • Markoff, A.: Recherches sur les valeurs extrèmes des intégrales et sur l’interpolation. Acta Math. 28(1), 243–301 (1904)
    • Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. 2(3), 5–7 (1940)
    • Mukhin, E., Tarasov, V., Varchenko, A.: Schubert calculus and representations of the general linear group. J. Am. Math. Soc. 22(4), 909–940...
    • Mukhin, E., Tarasov, V., Varchenko, A.: The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz. Ann. Math. (2) 170(2),...
    • Pólya, G.: On the mean-value theorem corresponding to a given linear homogeneous differential equation. Trans. Am. Math. Soc. 24(4), 312–324...
    • Postnikov, A.: Total positivity, Grassmannians, and networks. https://math.mit.edu/~apost/papers/tpgrass.pdf (2007)
    • Pólya, G., Szegö, G.: Aufgaben und Lehrsätze aus der Analysis. Band II. Die Grundlehren der mathematischen Wissenschaften, Band 20. Springer,...
    • Purbhoo, K.: Jeu de taquin and a monodromy problem for Wronskians of polynomials. Adv. Math. 224(3), 827–862 (2010)
    • Rietsch, K.: Unpublished notes (2009)
    • Ruffo, J., Sivan, Y., Soprunova, E., Sottile, F.: Experimentation and conjectures in the real Schubert calculus for flag manifolds. Exp. Math....
    • Sottile, F.: Real Schubert calculus: polynomial systems and a conjecture of Shapiro and Shapiro. Exp. Math. 9(2), 161–182 (2000)
    • Sottile, F.: Real solutions to equations from geometry. University Lecture Series, vol. 57. American Mathematical Society, Providence, RI...
    • Shapiro, B.Z., Shapiro, M.Z.: On the boundary of totally positive upper triangular matrices. Linear Algebra Appl. 231, 105–109 (1995)
    • Saldanha, N., Shapiro, B., Shapiro, M.: Grassmann convexity and multiplicative Sturm theory, revisited. Mosc. Math. J. 21(3), 613–637 (2021)
    • Schechtman, V., Varchenko, A.: Positive populations. J. Singul. 20, 342–370 (2020)
    • Zalik, R.A.: Cebyšev and weak ˇ Cebyšev systems. In Total positivity and its applications (Jaca, 1994), volume 359 of Math. Appl., pages 301–332....
    • Zielke, R.: Discontinuous Cebyšev systems. Lecture Notes in Mathematics, vol. 707. Springer, Berlin (1979)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno