Ir al contenido

Documat


Quartic surfaces up to volume preserving equivalence

  • Tom Ducat [1]
    1. [1] Durham University

      Durham University

      Reino Unido

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 1, 2024, 27 págs.
  • Idioma: inglés
  • DOI: 10.1007/s00029-023-00890-7
  • Enlaces
  • Resumen
    • We study log Calabi–Yau pairs of the form (P3, ), where is a quartic surface, and classify all such pairs of coregularity less than or equal to one, up to volume preserving equivalence. In particular, if (P3, ) is a maximal log Calabi–Yau pair then we show that it has a toric model

  • Referencias bibliográficas
    • Araujo, C., Corti, A., Massarenti, A.: Birational geometry of Calabi–Yau pairs and 3-dimensional Cremona transformations, 41pp. arXiv:2306.00207...
    • Blanc, J.: Symplectic birational transformations of the plane. Osaka J. Math. 50(2), 573–590 (2013)
    • Corti, A., Kaloghiros, A.-S.: The Sarkisov program for Mori fibred Calabi–Yau pairs. Alg. Geom. 3(3), 370–384 (2016)
    • Degtyarev, A.: Classification of surfaces of degree four having a non-simple singular point. Math. USSR Izvestiya 35, 607–627 (1990)
    • Déserti, Julie, Han, Frédéric.: On cubic birational maps of P3. Bulletin de la Société mathématique de France 144(2), 1–27 (2016)
    • Dolgachev, I.: Monoidal and submonoidal surfaces, and Cremona transformations, 32pp. arXiv:2306.01539 (2023)
    • Filipazzi, S., Mauri, M., Moraga, J.: Index of coregularity zero log Calabi–Yau pairs, preprint (2022), arXiv:2209.02925, 25pp
    • Gross, M., Hacking, P., Keel, S.: Mirror symmetry for log Calabi–Yau surfaces I. Publ. Math. de l’IHÉS 122, 65–168 (2015)
    • Hacking, P., Keel, S.: Mirror symmetry and cluster algebras. Proc. Int. Cong. Math. (Rio de Janeiro) 2, 689–716 (2018)
    • Jessop, C.: Quartic surfaces with singular points. Cambridge University Press, Cambridge (1917)
    • Kaloghiros, A.-S.: Some examples of Calabi–Yau pairs with maximal intersection and no toric model. In: Colombo, E., Fantechi, B., Frediani,...
    • Katz, S.: The cubo-cubic transformation of P3 is very special. Math. Z. 195, 255–257 (1987)
    • Kollár, J.: Singularities of the minimal model program, Cambridge Tracts in Mathematics, CUP, 200 (2013). With the collaboration of Sándor...
    • Kollár, J., Xu, C.: The dual complex of Calabi–Yau pairs. Invent. Math. 205, 527–557 (2016)
    • Liu, W., Rollenske, S.: Two-dimensional semi-log-canonical hypersurfaces. Le Mathematiche 67, 185–202 (2012)
    • Mella, M.: Birational geometry of rational quartic surfaces. J. Math. Pures Appl. 141, 89–98 (2020)
    • Noether, M.: Ueber die rationalen flächen vierter ordnung. Math. Ann. 33, 546–571 (1889)
    • Oguiso, K.: Isomorphic quartic K3 surfaces in the view of Cremona and projective transformations. Taiwan. J. Math. 21(3), 671–688 (2017)
    • Pan, I.: Sur le sous-groupe de décomposition d’une courbe irrationnelle dans le groupe de Cremona du plan. Mich. Math. J. 55, 285–298 (2007)
    • Pan, I., Ronga, F., Vust, T.: Transformations birationnelles quadratiques de l’espace projectif complexe à trois dimensions. Ann. Inst. Fourier...
    • Shah, J.: Degenerations of K3 surfaces of degree 4. Trans. Am. Math. Soc. 263(2), 271–308 (1981)
    • Umezu, Y.: On normal projective surfaces with trivial dualizing sheaf. Tokyo J. Math. 4(2), 343–354 (1981)
    • Umezu, Y.: Quartic surfaces of elliptic ruled type. Trans. Am. Math. Soc. 283(1) (1984)
    • Urabe, T.: Classification of non-normal quartic surfaces. Tokyo J. Math. 9(2), 265–295 (1986)
    • Wall, C.: Sextic curves and quartic surfaces with higher singularities. https://www.liverpool.ac.uk/~ctcw/hsscqs.ps (1999)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno