Ir al contenido

Documat


Cohomology of semisimple local systems and the decomposition theorem

  • Chuanhao Wei [2] ; Ruijie Yang [1]
    1. [1] Humboldt University of Berlin

      Humboldt University of Berlin

      Berlin, Stadt, Alemania

    2. [2] Institute for Theoretical Sciences, School of Science, Westlake University and Institute of Natural Sciences, Westlake Institute for Advanced Study China
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 1, 2024, 62 págs.
  • Idioma: inglés
  • DOI: 10.1007/s00029-023-00895-2
  • Enlaces
  • Resumen
    • In this paper, we study the cohomology of semisimple local systems in the spirit of classical Hodge theory. On the one hand, we construct a generalized Weil operator from the complex conjugate of the cohomology of a semisimple local system to the cohomology of its dual local system, which is functorial with respect to smooth restrictions. This operator allows us to study the Poincaré pairing, usually not positive definite, in terms of a positive definite Hermitian pairing. On the other hand, we prove a global invariant cycle theorem for semisimple local systems. As an application, we give a new proof of Sabbah’s Decomposition Theorem for the direct images of semisimple local systems under proper algebraic maps, by adapting the method of de Cataldo-Migliorini, without using the category of polarizable twistor D-modules. This answers a question of Sabbah.

  • Referencias bibliográficas
    • Be˘ılinson, A.A., Bernstein, J., Deligne, P., Gabber, O.: Faisceaux pervers. Astérisque, vol. 100, 2nd ed., Soc. Math. France, Paris, 2018,...
    • Bhatt, B., Lurie, J.: p-adic Riemann–Hilbert correspondence. To appear.
    • Böckle, G., Khare, C.: Mod l representations of arithmetic fundamental groups. II. A conjecture of A. J. de Jong. Compos. Math., 142(2), 271–294,...
    • Budur, N., Wang, B.: Absolute sets and the decomposition theorem. Ann. Sci. Éc. Norm. Supér. (4), 53(2), 469–536, 2020.
    • Corlette, K.: Flat G-bundles with canonical metrics. J. Differ. Geom., 28(3), 361–382, 1988.
    • de Cataldo, M.A.A.: Decomposition theorem for semi-simples. J. Singul., 14, 194–197, 2016.
    • de Cataldo, M.A.A., Migliorini, L.: The Hodge theory of algebraic maps. arXiv preprint arXiv /0306030, 2003.
    • de Cataldo, M.A.A., Migliorini, L.: The Hodge theory of algebraic maps. Ann. Sci. École Norm. Sup. (4), 38(5), 693–750, 2005.
    • de Cataldo, M.A.A., Migliorini, L.: The decomposition theorem, perverse sheaves and the topology of algebraic maps. Bull. Am. Math. Soc. (N.S.),...
    • de Cataldo, M.A.A., Migliorini, L.: The perverse filtration and the Lefschetz hyperplane theorem. Ann. Math. (2), 171(3), 2089–2113, 2010.
    • Deligne, P.: Théorème de Lefschetz et critères de dégénérescence de suites spectrales. Inst. Hautes Études Sci. Publ. Math., 35, 259–278,...
    • Deligne, P.: Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math., 40, 5–57, 1971.
    • Deligne, P.: Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math., 44, 5–77, 1974.
    • Drinfeld, V.: On a conjecture of Kashiwara. Math. Res. Lett., 8(5–6), 713–728, 2001.
    • El Zein, F.: Mixed Hodge structures. Trans. Am. Math. Soc., 275(1), 71–106, 1983.
    • El Zein, F., ung Tráng, L.D., Ye, X.: Decomposition, purity and fibrations by normal crossing divisors, 2018.
    • Eyssidieux, P., Katzarkov, L., Pantev, T., Ramachandran, M.: Linear Shafarevich conjecture. Ann. Math. (2), 176(3), 1545–1581, 2012.
    • Gaitsgory, D.: On de Jong’s conjecture. Israel J. Math., 157, 155–191, 2007.
    • Godbillon, C.: Éléments de topologie algébrique. Hermann, Paris, 1971.
    • Hotta, R., Takeuchi, K., Tanisaki, T.: D-modules, perverse sheaves, and representation theory. Progress in Mathematics, vol. 236, Birkhäuser...
    • Kashiwara, M.: Semisimple holonomic D-modules. In: Topological field theory, primitive forms and related topics (Kyoto, 1996), vol. 160 of...
    • Kashiwara, M., Schapira, P.: Sheaves on manifolds. Grundlehren der mathematischen Wissenschaften, vol. 292, Springer-Verlag, Berlin, 1990....
    • MacPherson, R., Vilonen, K.: Elementary construction of perverse sheaves. Invent. Math., 84(2), 403–435, 1986.
    • Mochizuki, T.: Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules. I. Mem. Amer. Math. Soc., 185(869),...
    • Mochizuki, T.: Asymptotic behaviour of tame harmonic bundles and an application to pure twistor D-modules. II. Mem. Amer. Math. Soc., 185(870),...
    • Mochizuki, T.: Wild harmonic bundles and wild pure twistor D-modules. Astérisque, (340), x+607, 2011.
    • Sabbah, C.: Polarizable twistor D-modules. Astérisque, (300), vi+208, 2005.
    • Saito, M.: Modules de Hodge polarisables. Publications of the Research Institute for Mathematical Sciences, 24(6), 849–995, 1988.
    • Schmid, W.: Variation of Hodge structure: the singularities of the period mapping. Invent. Math., 22(3), 211–319, 1973.
    • Simpson, C.: Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization. J. Am. Math. Soc., 1(4),...
    • Simpson, C.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math., 75, 5–95, 1992.
    • Simpson, C.: Some families of local systems over smooth projective varieties. Ann. Math. (2), 138(2), 337–425, 1993.
    • Simpson, C.: Mixed twistor structures. arXiv preprint arXiv /9705006, 1997.
    • Voisin, C.: Hodge theory and complex algebraic geometry. I, vol. 76 of Cambridge Studies in Advanced Mathematics, Cambridge University Press,...
    • Yang, R.: Decomposition Theorem for Semisimple Local Systems. Ph.D. thesis, Stony Brook University, 2021.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno