Ir al contenido

Documat


P-associahedra

  • Pavel Galashin [1]
    1. [1] University of California System

      University of California System

      Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 1, 2024, 34 págs.
  • Idioma: inglés
  • DOI: 10.1007/s00029-023-00896-1
  • Enlaces
  • Resumen
    • For each poset P, we construct a polytope A (P) called the P-associahedron. Similarly to the case of graph associahedra, the faces of A (P) correspond to certain nested collections of subsets of P. The Stasheff associahedron is a compactification of the configuration space of n points on a line, and we recover A (P) as an analogous compactification of the space of order-preserving maps P → R. Motivated by the study of totally nonnegative critical varieties in the Grassmannian, we introduce affine poset cyclohedra and realize these polytopes as compactifications of configuration spaces of n points on a circle. For particular choices of (affine) posets, we obtain associahedra, cyclohedra, permutohedra, and type B permutohedra as special cases

  • Referencias bibliográficas
    • Adiprasito, K., Benedetti, B.: Barycentric subdivisions of convex complexes are collapsible. Discrete Comput. Geom. 64(3), 608–626 (2020)
    • Axelrod, S., Singer, I.M.: Chern–Simons perturbation theory. II. J. Differ. Geom. 39(1), 173–213 (1994)
    • Björner, A.: Posets, regular CW complexes and Bruhat order. Eur. J. Combin. 5(1), 7–16 (1984)
    • Bott, R., Taubes, C.: On the self-linking of knots. J. Math. Phys. 35(10), 5247–5287 (1994)
    • Carr, M.P., Devadoss, S.L.: Coxeter complexes and graph-associahedra. Topol. Appl. 153(12), 2155–2168 (2006)
    • Chmutov, M., Pylyavskyy, P., Yudovina, E.: Matrix-ball construction of affine Robinson–Schensted correspondence. Sel. Math. (N.S.) 24(2),...
    • Davis, M.W.: The Geometry and Topology of Coxeter Groups. London Mathematical Society Monographs Series, vol. 32. Princeton University Press,...
    • De Concini, C., Procesi, C.: Wonderful models of subspace arrangements. Sel. Math. (N.S.) 1(3), 459–494 (1995)
    • Devadoss, S.L., Forcey, S., Reisdorf, S., Showers, P.: Convex polytopes from nested posets. Eur. J. Combin. 43, 229–248 (2015)
    • Einstein, D., Propp, J.: Piecewise-linear and birational toggling. 26th International Conference on Formal Power Series and Algebraic Combinatorics...
    • Einstein, D., Propp, J.: Combinatorial, piecewise-linear, and birational homomesy for products of two chains. Algebr. Comb. 4(2), 201–224...
    • Fulton, W., MacPherson, R.: A compactification of configuration spaces. Ann. Math. (2) 139(1), 183–225 (1994)
    • Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17(3), 357–453 (1982)
    • Feichtner, E.M., Sturmfels, B.: Matroid polytopes, nested sets and Bergman fans. Port. Math. (N.S.) 62(4), 437–468 (2005)
    • Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (electronic) (2002)
    • Gaiffi, G.: Models for real subspace arrangements and stratified manifolds. Int. Math. Res. Not. 12, 627–656 (2003)
    • Galashin, P.: Totally nonnegative critical varieties. Int. Math. Res. Not. IMRN (to appear). arXiv:2110.08548v1 (2021)
    • Galashin, P.: Critical varieties in the Grassmannian. Commun. Math. Phys. 401(3), 3277–3333 (2023)
    • Galashin, P., Karp, S.N., Lam, T.: Regularity theorem for totally nonnegative flag varieties. J. Am. Math. Soc. (to appear). arXiv:1904.00527v3...
    • Galashin, P., Pylyavskyy, P.: R-systems. Sel. Math. (N.S.) 25(2), Paper No. 22 (2019)
    • Haiman, M.: Constructing the associahedron. Preprint (1984)
    • Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer, New York (1977)
    • Hetyei, G.: The type B permutohedron and the poset of intervals as a Tchebyshev transform. arXiv:2007.07362v2 (2020)
    • Jochemko, K., Sanyal, R.: Arithmetic of marked order polytopes, monotone triangle reciprocity, and partial colorings. SIAM J. Discrete Math....
    • Kontsevich, M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48(1), 35–72 (1999)
    • Lee, C.W.: The associahedron and triangulations of the n-gon. Eur. J. Combin. 10(6), 551–560 (1989)
    • Lam, T., Postnikov, A.: Alcoved polytopes. I. Discrete Comput. Geom. 38(3), 453–478 (2007)
    • Lam, T., Pylyavskyy, P.: Laurent phenomenon algebras. Camb. J. Math. 4(1), 121–162 (2016)
    • Lam, T., Pylyavskyy, P.: Linear Laurent phenomenon algebras. Int. Math. Res. Not. IMRN 10, 3163–3203 (2016)
    • Lambrechts, P., Turchin, V., Volić, I.: Associahedron, cyclohedron and permutohedron as compactifications of configuration spaces. Bull. Belg....
    • Oda, T.: Convex bodies and algebraic geometry, volume 15 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and...
    • Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv /0211159 (2002)
    • Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv /0307245 (2003)
    • Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv /0303109 (2003)
    • Postnikov, A.: Affine approach to quantum Schubert calculus. Duke Math. J. 128(3), 473–509 (2005)
    • Postnikov, A.: Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN 6, 1026–1106 (2009)
    • Padrol, A., Palu, Y., Pilaud, V., Plamondon, P.-G.: Associahedra for finite type cluster algebras and minimal relations between g-vectors....
    • Postnikov, A., Reiner, V., Williams, L.: Faces of generalized permutohedra. Doc. Math. 13, 207–273 (2008)
    • Sack, A.: A realization of poset associahedra. arXiv:2301.11449v2 (2023)
    • Simion, R.: A type-B associahedron, vol. 30, pp. 2–25 (2003). Formal power series and algebraic combinatorics (Scottsdale, AZ, 2001)
    • Sinha, D.P.: Manifold-theoretic compactifications of configuration spaces. Sel. Math. (N.S.) 10(3), 391–428 (2004)
    • Smale, S.: Generalized Poincaré’s conjecture in dimensions greater than four. Ann. Math. 2(74), 391–406 (1961)
    • Stasheff, J.D.: Homotopy associativity of H-spaces. I, II. Trans. Am. Math. Soc. 108, 275–292 (1963); ibid., 108, 293–312 (1963)
    • Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1(1), 9–23 (1986)
    • Striker, J., Williams, N.: Promotion and rowmotion. Eur. J. Combin. 33(8), 1919–1942 (2012)
    • Tamari, D.: Monoïdes préordonnés et chaînes de Malcev. Université de Paris, Thèse (1951)
    • Wachs, M.L.: Poset topology: tools and applications. In: Geometric Combinatorics, volume 13 of IAS/Park City Math. Ser., pp. 497–615. Amer....
    • Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno