Ir al contenido

Documat


Formality of differential graded algebras and complex Lagrangian submanifolds

  • Borislav Mladenov [1]
    1. [1] University of California System

      University of California System

      Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 1, 2024, 42 págs.
  • Idioma: inglés
  • DOI: 10.1007/s00029-023-00894-3
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let i : L −→ X be a compact Kähler Lagrangian in a holomorphic symplectic variety X/C. We use deformation quantisation to show that the endomorphism differential graded algebra RHom i∗K1/2 L ,i∗K1/2 L is formal. We prove a generalisation to pairs of Lagrangians, along with auxiliary results on the behaviour of formality in families of A∞-modules.

  • Referencias bibliográficas
    • Abouzaid, M., Smith, I.: The symplectic arc algebra is formal. Duke Math. J. 165(6), 985–1060 (2016)
    • Atiyah, M.F.: Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. 4(4), 47–62 (1971)
    • Brav, C., Bussi, V., Dupont, D., Joyce, D., Szendrői, B.: Symmetries and stabilization for sheaves of vanishing cycles. J. Singul. 11, 85–151...
    • Behrend, K., Fantechi, B.: Gerstenhaber and Batalin-Vilkovisky structures on Lagrangian intersections. In: Algebra, Arithmetic, and Geometry:...
    • Baranovsky, V., Ginzburg, V., Kaledin, D., Pecharich, J.: Quantization of line bundles on lagrangian subvarieties. Sel. Math. (N.S.), 22(1):1–25...
    • Bezrukavnikov, R., Kaledin, D.: Fedosov quantization in algebraic context. Mosc. Math. J., 4(3):559–592 (2004)
    • Bussi, V.: Categorification of lagrangian intersections on complex symplectic manifolds using perverse sheaves of vanishing cycles. 4 (2014)
    • Calaque, D., Dolgushev, V., Halbout, G.: Formality theorems for Hochschild chains in the Lie algebroid setting. J. Reine Angew. Math. 612,...
    • Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975)
    • D’Agnolo, A., Schapira, P.: Quantization of complex Lagrangian submanifolds. Adv. Math. 213(1), 358–379 (2007)
    • Gerstenhaber, M.: On the deformation of rings and algebras IV. Ann. Math. 2(99), 257–276 (1974)
    • Goldman, W.M., Millson, J.J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Études...
    • Gunningham, S., Safronov, P.: Deformation quantization and perverse sheaves. In preparation
    • Joyce, D.: A classical model for derived critical loci. J. Differ. Geom. 101(2), 289–367 (2015)
    • Kadeišvili, T. V.: On the theory of homology of fiber spaces. Uspekhi Mat. Nauk, 35(3(213)):183–188, (1980). International Topology Conference...
    • Kaledin, D.: Some remarks on formality in families. Mosc. Math. J., 7(4):643–652, 766, (2007)
    • Kapustin, A.: Topological strings on noncommutative manifolds. Int. J. Geom. Methods Mod. Phys. 1, 49–81 (2004)
    • Kapustin, A.: A-branes and noncommutative geometry. arXiv /0502212 (2005)
    • Kontsevich, M.: Formality conjecture. In: Deformation Theory and Symplectic Geometry (Ascona, 1996), vol. 20 of Math. Phys. Stud., pp. 139–156....
    • Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)
    • Kapustin, A., Rozansky, L.: Three-dimensional topological field theory and symplectic algebraic geometry II. Commun. Number Theory Phys. 4,...
    • Kashiwara, M., Schapira, P.: Constructibility and duality for simple holonomic modules on complex symplectic manifolds. Am. J. Math. 130(1),...
    • Kashiwara, M., Schapira, P.: Deformation quantization modules. Astérisque, (345) +147, (2012)
    • Lefèvre-Hasegawa, K.: Sur les A∞-catègories (2003)
    • Lunts, V.A.: Formality of DG algebras (after Kaledin). J. Algebra 323(4), 878–898 (2010)
    • Polesello, P., Schapira, P.: Stacks of quantization-deformation modules on complex symplectic manifolds. Int. Math. Res. Not. 2004(49), 2637–2664...
    • Simpson, C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)
    • Seidel, P., Smith, I.: A link invariant from the symplectic geometry of nilpotent slices. Duke Math. J. 134(3), 453–514 (2006)
    • Seidel, P., Thomas, R.: Braid group actions on derived categories of coherent sheaves. Duke Math. J. 108(1), 37–108 (2001)
    • Solomon, J.P., Verbitsky, M.: Locality in the Fukaya category of a hyperkähler manifold. Compos. Math. 155(10), 1924–1958 (2019)
    • Van den Bergh, M.: On global deformation quantization in the algebraic case. J. Algebra 315(1), 326–395 (2007)
    • Yekutieli, A.: Deformation quantization in algebraic geometry. Adv. Math. 198(1), 383–432 (2005)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno