Ir al contenido

Documat


Vector-relation configurations and plabic graphs

  • Niklas Affolter [1] ; Max Glick [4] ; Pavlo Pylyavskyy [2] ; Sanjay Ramassamy [3]
    1. [1] Technical University of Berlin

      Technical University of Berlin

      Berlin, Stadt, Alemania

    2. [2] University of Minnesota

      University of Minnesota

      City of Minneapolis, Estados Unidos

    3. [3] University of Paris-Saclay

      University of Paris-Saclay

      Arrondissement de Palaiseau, Francia

    4. [4] Google Inc, Pittsburgh, USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 1, 2024, 55 págs.
  • Idioma: inglés
  • DOI: 10.1007/s00029-023-00898-z
  • Enlaces
  • Resumen
    • We study a simple geometric model for local transformations of bipartite graphs.

      The state consists of a choice of a vector at each white vertex made in such a way that the vectors neighboring each black vertex satisfy a linear relation. The evolution for different choices of the graph coincides with many notable dynamical systems including the pentagram map, Q-nets, and discrete Darboux maps. On the other hand, for plabic graphs we prove unique extendability of a configuration from the boundary to the interior, an elegant illustration of the fact that Postnikov’s boundary measurement map is invertible. In all cases there is a cluster algebra operating in the background, resolving the open question for Q-nets of whether such a structure exists.

  • Referencias bibliográficas
    • Affolter, N., George, T., Ramassamy, S.: Integrable dynamics in projective geometry via dimers and triple crossing diagram maps on the cylinder....
    • Affolter, N., Glick, M., Ramassamy, S.: Triple crossing diagrams and multiple cluster structures. In preparation
    • Affolter, N.C.: Miquel dynamics, Clifford lattices and the dimer model. Lett. Math. Phys. 111(3), 61 (2021)
    • Arkani-Hamed, N., Bourjaily, J., Cachazo, F., Goncharov, A., Postnikov, A., Trnka, J.: Grassmannian Geometry of Scattering Amplitudes. Cambridge...
    • Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry, Volume 98 of Graduate Studies in Mathematics. Am. Math. Soc. Provid. RI (2008)
    • Carnot, L.: Essai sur la Théorie des Transversales. Courcier, Toulouse (1806)
    • Doliwa, Adam: Geometric discretisation of the Toda system. Phys. Lett. A 234(3), 187–192 (1997)
    • Doliwa, A., Santini, P.M.: Multidimensional quadrilateral lattices are integrable. Phys. Lett. A 233(46), 365–372 (1997)
    • Dubédat, J.: Exact bosonization of the Ising model. arXiv:1112.4399
    • Fock, V.: Inverse spectral problem for GK integrable system. arXiv:1503.00289
    • Fomin, Sergey, Zelevinsky, Andrei: Cluster algebras. IV. Coefficients. Compos. Math. 143(1), 112–164 (2007)
    • Galashin, Pavel, Pylyavskyy, Pavlo: Ising model and the positive orthogonal Grassmannian. Duke Math. J. 169(10), 1877–1942 (2020)
    • Gekhtman, Michael, Shapiro, Michael, Tabachnikov, Serge, Vainshtein, Alek: Higher pentagram maps, weighted directed networks, and cluster...
    • Gekhtman, Michael, Shapiro, Michael, Tabachnikov, Serge, Vainshtein, Alek: Integrable cluster dynamics of directed networks and pentagram...
    • Glick, Max: The pentagram map and Y-patterns. Adv. Math. 227(2), 1019–1045 (2011)
    • Glick, Max, Pylyavskyy, Pavlo: Y-meshes and generalized pentagram maps. Proc. Lond. Math. Soc. 112(4), 753–797 (2016)
    • Goncharov, Alexander B., Kenyon, Richard: Dimers and cluster integrable systems. Ann. Sci. Éc. Norm. Supér. (4) 46(5), 747–813 (2013)
    • Izosimov, Anton: Dimers, networks, and cluster integrable systems. Geom. Funct. Anal. 32(4), 861–880 (2022)
    • Jeong, I.-J., Musiker, G., Zhang, S.: Gale-Robinson sequences and brane tilings. DMTCS Proceedings vol. AS, 25th International Conference...
    • Kenyon, R.: Lectures on dimers. In Statistical Mechanics, Volume 16 of IAS/Park City Math. Ser., pp. 191–230. Am. Math. Soc. Provid. RI (2009)
    • Kenyon, R., Lam, W.Y., Ramassamy, S., Russkikh, M.: Dimers and circle patterns. Ann. Sci. Éc. Norm. Supér 55(3), 863–901 (2022)
    • Kenyon, R., Okounkov, A.: Planar dimers and Harnack curves. Duke Math. J. 131(3), 499–524 (2006)
    • Kenyon, R., Pemantle, R.: Double-dimers, the Ising model and the hexahedron recurrence. J. Combin. Theory Ser. A 137, 27–63 (2016)
    • Kenyon, R.W., Sheffield, S.: Dimers, tilings and trees. J. Combin. Theory Ser. B 92(2), 295–317 (2004)
    • Knutson, Allen, Lam, Thomas, Speyer, David E.: Positroid varieties: juggling and geometry. Compos. Math. 149(10), 1710–1752 (2013)
    • Konopelchenko, B.G., Schief, W.K.: Menelaus’ theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy. J. Phys....
    • Lam, T.: Totally nonnegative Grassmannian and Grassmann polytopes. In: Current Developments in Mathematics 2014, pp. 51–152. Int. Press, Somerville,...
    • Lindström, Bernt: On the vector representations of induced matroids. Bull. Lond. Math. Soc. 5, 85–90 (1973)
    • Muller, Greg, Speyer, David E.: The twist for positroid varieties. Proc. Lond. Math. Soc. 115(5), 1014–1071 (2017)
    • Ovsienko, Valentin, Schwartz, Richard, Tabachnikov, Serge: The pentagram map: a discrete integrable system. Comm. Math. Phys. 299(2), 409–446...
    • Postnikov, A.: Total positivity, Grassmannians, and networks. arXiv preprint arXiv /0609764 (2006)
    • Postnikov, A.: Positive Grassmannian and polyhedral subdivisions. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro...
    • Schief, Wolfgang K.: Lattice geometry of the discrete Darboux, KP, BKP and CKP equations. Menelaus’ and Carnot’s theorems. J. Nonlinear Math....
    • Schwartz, Richard: The pentagram map. Exp. Math. 1(1), 71–81 (1992)
    • Schwartz, Richard: Pentagram spirals. Exp. Math. 22(4), 384–405 (2013)
    • Speyer, D.E.: Variations on a theme of Kasteleyn, with application to the totally nonnegative Grassmannian. Electron. J. Combin. 23(2), 2.24...
    • Talaska, Kelli: Combinatorial formulas for T-coordinates in a totally nonnegative Grassmannian. J. Combin. Theory Ser. A 118(1), 58–66 (2011)
    • Talaska, Kelli, Williams, Lauren: Network parametrizations for the Grassmannian. Algebra Number Theory 7(9), 2275–2311 (2013)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno