Ir al contenido

Documat


The reductive Borel–Serre compactification as a model for unstable algebraic K-theory

  • Dustin Clausen [1] ; Mikala Ørsnes Jansen [1]
    1. [1] University of Copenhagen

      University of Copenhagen

      Dinamarca

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 1, 2024, 93 págs.
  • Idioma: inglés
  • DOI: 10.1007/s00029-023-00900-8
  • Enlaces
  • Resumen
    • Let A be an associative ring and M a finitely generated projective A-module. We introduce a category RBS(M) and prove several theorems which show that its geometric realisation functions as a well-behaved unstable algebraic K-theory space. These categories RBS(M) naturally arise as generalisations of the exit path ∞-category of the reductive Borel–Serre compactification of a locally symmetric space, and one of our main techniques is to find purely categorical analogues of some familiar structures in these compactifications

  • Referencias bibliográficas
    • Abramenko, P., Brown, K.S.: Buildings. Theory and Applications. Graduate Texts in Mathematics, vol. 248. Springer, New York (2008)
    • Ayala, D., Francis, J.: Fibrations of ∞-categories. High. Struct. 4(1), 168–265 (2020)
    • Aoki, K.: Tensor triangular geometry of filtered objects and sheaves. Preprint arXiv:2001.00319 (2020)
    • Bullejos, M., Cegarra, A.M.: On the geometry of 2-categories and their classifying spaces. K-Theory 29(3), 211–229 (2003)
    • Barwick, C., Glasman, S., Haine, P.: Exodromy. Preprint arXiv:1807.03281 (2020)
    • Borel, A., Ji, L.: Compactifications of Symmetric and Locally Symmetric Spaces. Mathematics: Theory & Applications, Birkhäuser Boston,...
    • Borsuk, K.: On the imbedding of systems of compacta in simplicial complexes. Fund. Math. 35, 217–234 (1948)
    • Borel, A.: Stable real cohomology of arithmetic groups. Annales scientifiques de l’École Normale Supérieure 7, 235–272 (1974)
    • Borel, A., Serre, J.-P.: Corners and arithmetic groups. Comment. Math. Helv. 48, 436–491 (1973). Avec un appendice: Arrondissement des variétés...
    • Borel, A., Serre, J.-P.: Corners and arithmetic groups. Commentarii Mathematici Helvetici 48(1), 436–491 (1973)
    • Borel, A., Tits, J.: Groupes réductifs. Inst. Hautes Études Sci. Publ. Math. (27):55–150 (1965)
    • Borel, A., Tits, J.: Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I. Invent. Math. 12, 95–104 (1971)
    • Burgoyne, N., Williamson, C.: On a theorem of Borel and Tits for finite Chevalley groups. Arch. Math. (Basel) 27(5), 489–491 (1976)
    • Carrasco, P., Cegarra, A.M., Garzón, A.R.: Nerves and classifying spaces for bicategories. Algebr. Geom. Topol. 10(1), 219–274 (2010)
    • Charney, R.M.: Homology stability for GLn of a Dedekind domain. Invent. Math. 56(1), 1–17 (1980)
    • Cisinski, D.-C.: Higher Categories and Homotopical Algebra. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge...
    • Charney, R., Lee, R.: Cohomology of the Satake compactification. Topology 22(4), 389–423 (1983)
    • Deligne, P.: Théorie de Hodge, III. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 44(1), 5–77 (1974)
    • Demazure, M., Grothendieck, A.: Schémas en groupes: séminaire de géométrie algébrique du Bois Marie, 1962/64, SGA 3, vol. 1. Springer (1970)
    • Friedlander, E.M.: Etale Homotopy of Simplical Schemes, vol. 104. Princeton University Press (1982)
    • Gepner, D., Haugseng, R.: Enriched ∞-categories via non-symmetric ∞-operads. Adv. Math. 279, 575–716 (2015)
    • Galatius, S., Kupers, A., Randal-Williams, O.: E∞-cells and general linear groups of finite fields. Preprint arXiv:1810.11931 (2018)
    • Galatius, S., Kupers, A., Randal-Williams, O.: Cellular Ek -algebras. Preprint arXiv:1805.07184 (2021)
    • Grayson, D.: Higher algebraic K-theory. II (after Daniel Quillen). In: Algebraic K-Theory (Proceedings of an International Conference held...
    • Grodal, J.: Endotrivial modules for finite groups via homotopy theory. Preprint arXiv:1608.00499 (2018)
    • Humphreys, J.E., et al.: The Steinberg representation. Bull. Am. Math. Soc. 16(2), 247–263 (1987)
    • Haine, P.J.: The homotopy-invariance of constructible sheaves of spaces. Preprint arXiv:2010.06473 (2020)
    • Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
    • Hebestreit, F., Linskens, S., Nuiten, J.: Orthofibrations and monoidal adjunctions. Preprint arXiv:2011.11042 (2020)
    • Horev, A., Yanovski, L.: On conjugates and adjoint descent. Preprint arXiv:1705.04933 (2017)
    • Jansen, M.Ø.: The stratified homotopy type of the reductive Borel–Serre compactification. Preprint arXiv:2012.10777 (2020)
    • Ji, L.: Lectures on locally symmetric spaces and arithmetic groups. In: Lie Groups and Automorphic Forms. AMS/IP Studies in Advanced Mathematics,...
    • Jackowski, S., McClure, J., Oliver, B.: Homotopy theory of classifying spaces of compact lie groups. In: Algebraic Topology and Its Applications,...
    • Leinster, T.: Basic bicategories. Preprint arXiv /9810017 (1998)
    • Leinster, T.: Higher Operads, Higher Categories. London Mathematical Society Lecture Note series, vol. 298. Cambridge University Press, Cambridge...
    • Lahtinen, A., Sprehn, D.: Modular characteristic classes for representations over finite fields. Adv. Math. 323, 1–37 (2018)
    • Lurie, J.: Higher Topos Theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton, NJ (2009)
    • Lurie, J.: (∞, 2)-Categories and the Goodwillie Calculus I. Preprint arXiv:0905.0462 (2009)
    • Lurie, J.: Higher algebra (2017)
    • Mostow, G.D.: Self-adjoint groups. Ann. Math. 2(62), 44–55 (1955)
    • Milgram, R.J., Priddy, S.B.: Invariant theory and H∗(GLn(Fp); Fp). J. Pure Appl. Algebra 44(1–3), 291–302 (1987)
    • McDuff, D., Segal, G.: Homology fibrations and the group-completion theorem. Invent. Math. 31(3), 279–284 (1976)
    • Nesterenko, Y.P., Suslin, A.A.: Homology of the full linear group over a local ring, and Milnor’s K-theory. Math. USSR-Izv. 34(1), 121 (1990)
    • Quillen, D.: On the cohomology and K-theory of the general linear groups over a finite field. Ann. Math. 96, 552–586 (1972)
    • Quillen, D.: Finite generation of the groups Ki of rings of algebraic integers. In: Higher K-Theories, pp. 179–198. Springer, Berlin (1973)
    • Quillen, D.: Higher algebraic K-theory: I. In: Higher K-Theories, pp. 85–147. Springer, Berlin (1973)
    • Rezk, C.: A model for the homotopy theory of homotopy theory. Trans. Am. Math. Soc. 353(3), 973–1007 (2001)
    • Segal, G.: Configuration-spaces and iterated loop-spaces. Invent. Math. 21, 213–221 (1973)
    • Segal, G.: Categories and cohomology theories. Topology 13(3), 293–312 (1974)
    • Solomon, L.: The Steinberg character of a finite group with BN-pair. In: Theory of Finite Groups (Symposium, Harvard University, Cambridge,...
    • Suslin, A.A.: Stability in algebraic K-theory. In: Algebraic K-Theory, pp. 304–333. Springer, Berlin (1982)
    • Tamme, G.: Excision in algebraic K-theory revisited. Compos. Math. 154(9), 1801–1814 (2018)
    • Vaserstein, L.N.: On the stabilization of the general linear group over a ring. Math. USSR Sbornik 8, 383–400 (1969)
    • Waldhausen, E.: Algebraic K-theory of spaces. In: Algebraic and Geometric Topology (New Brunswick, NJ, 1983). Lecture Notes in Mathematics,...
    • Weibel, C.A.: The K-book: An Introduction to Algebraic K-Theory, vol. 145. American Mathematical Society, Providence (2013)
    • Yuan, A.: Integral models for spaces via the higher Frobenius. Preprint arXiv:1910.00999 (2019)
    • Zucker, S.: L²-cohomology of warped products and arithmetic groups. Invent. Math. 70(2), 169–218 (1982)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno