Ir al contenido

Documat


Counting orbits of certain infinitely generated non-sharp discontinuous groups for the anti-de Sitter space

  • Kazuki Kannaka [1]
    1. [1] RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS),Japan
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 1, 2024, 31 págs.
  • Idioma: inglés
  • DOI: 10.1007/s00029-023-00902-6
  • Enlaces
  • Resumen
    • Inspired by an example of Guéritaud and Kassel (Geom Topol 21(2):693–840, 2017), we construct a family of infinitely generated discontinuous groups for the 3- dimensional anti-de Sitter space AdS3. These groups are not necessarily sharp (a kind of “strong” proper discontinuity condition introduced by Kassel and Kobayashi (Adv Math 287:123–236, 2016), and we give its criterion. Moreover, we find upper and lower bounds of the counting N(R) of a -orbit contained in a pseudo-ball B(R) as the radius R tends to infinity.We then find a non-sharp discontinuous group for which there exist infinitely many L2-eigenvalues of the Laplacian on the noncompact anti-de Sitter manifold \AdS3, by applying the method established by Kassel–Kobayashi. We also prove that for any increasing function f , there exists a discontinuous group for AdS3 such that the counting N(R) of a-orbit is larger than f (R)for a sufficiently large R.

  • Referencias bibliográficas
    • Benoist, Y.: Actions propres sur les espaces homogènes réductifs. Ann. Math. (2) 144(2), 315–347 (1996)
    • Eskin, A., McMullen, C.: Mixing, counting, and equidistribution in Lie groups. Duke Math. J. 71(1), 181–209 (1993)
    • Guéritaud, F., Kassel, F.: Maximally stretched laminations on geometrically finite hyperbolic manifolds. Geom. Topol. 21(2), 693–840 (2017)
    • Helgason, S.: Differential Geometry and Symmetric Spaces. Pure and Applied Mathematics, vol. XII. Academic Press, New York (1962)
    • Kassel, F.: Quotients compacts d’espaces homogènes réels ou p-adiques. PhD thesis, Université Paris-Sud (2009)
    • Kassel, F., Kobayashi, T.: Poincaré series for non-Riemannian locally symmetric spaces. Adv. Math. 287, 123–236 (2016)
    • Kassel, F., Kobayashi, T.: Spectral analysis on standard locally homogeneous spaces. Preprint arXiv:1912.12601
    • Kobayashi, T.: Proper action on a homogeneous space of reductive type. Math. Ann. 285(2), 249–263 (1989)
    • Kobayashi, T.: Criterion for proper actions on homogeneous spaces of reductive groups. J. Lie Theory 6(2), 147–163 (1996)
    • Kobayashi, T.: Deformation of compact Clifford–Klein forms of indefinite-Riemannian homogeneous manifolds. Math. Ann. 310(3), 395–409 (1998)
    • Kobayashi, T.: Discontinuous groups for non-Riemannian homogeneous spaces. In: Mathematics Unlimited—2001 and Beyond, pp. 723–747. Springer,...
    • Milnor, J.: A note on curvature and fundamental group. J. Differ. Geom. 2, 1–7 (1968)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno