Ir al contenido

Documat


Generic density of geodesic nets

  • Yevgeny Liokumovich [1] ; Bruno Staffa [1]
    1. [1] University of Toronto

      University of Toronto

      Canadá

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 1, 2024, 10 págs.
  • Idioma: inglés
  • DOI: 10.1007/s00029-023-00901-7
  • Enlaces
  • Resumen
    • A weighted multraph is a finite one-dimensional simplicial complex with a multiplicity n(E) ∈ N assigned to each edge (1-dimensional face) E of . A geodesic net is a map from a weighted multigraph to a Riemannian manifold (M, g), whose edges are geodesic segments in M. A geodesic net is called stationary if it is a critical point of the length functional Lg with respect to g. This is equivalent to the condition that the sum of the inward pointing unit tangent vectors (with multiplicity) is zero at every vertex (see [19] for background on stationary geodesic nets and open problems). In this paper we prove the following result.

  • Referencias bibliográficas
    • Almgren, F.: The homotopy groups of the integral cycle groups. Topology, 257–299 (1962)
    • Almgren, F.: The theory of varifolds. Princeton, Mimeographed notes (1965)
    • Calabi, E., Cao, J.: Simple closed geodesics on convex surfaces. J. Diff. Geom. 36(3), 517–549 (1992)
    • Chodosh, O., Mantoulidis, C.: The p-widths of a surface, preprint. https://arxiv.org/abs/2107.11684 (2021)
    • Gromov, M.: Dimension, nonlinear spectra and width. Geometric aspects of functional analysis, (1986/87), 132-184, Lecture Notes in Math. 1317,...
    • Gromov, M.: Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13, 178–215 (2003)
    • Guth, L.: Minimax problems related to cup powers and Steenrod squares. Geom. Funct. Anal. 18, 1917–1987 (2009)
    • Guth, L., Liokumovich, Y.: Parametric inequalities and Weyl law for the volume spectrum, preprint, https://arxiv.org/abs/2202.11805 (2022)
    • Hatcher, A.: Spectral sequences. http://pi.math.cornell.edu/~hatcher/AT/ATch5.pdf
    • Irie, K.: Dense existence of periodic Reeb orbits and ECH spectral invariants. J. Mod. Dyn. 9, 357–363 (2015)
    • Irie, K., Marques, F., Neves, A.: Density of minimal hypersurfaces for generic metrics. Ann. Math. 187(3), 963–972 (2018)
    • Li, X., Staffa, B.: On the equidistribution of closed geodesics and geodesic nets, preprint, https://arxiv.org/abs/2205.13694 (2022)
    • Liokumovich, Marques, Neves: Weyl law for the volume spectrum. Ann. Math. 187(3), 933–961 (2018)
    • Marques, F.C., Neves, A.: Existence of infinitely many minimal hypersurfaces in positive Ricci curvature. Invent. Math. 209(2), 577–616 (2017)
    • Marques, F.C., Neves, A.: Min-max theory and the Willmore conjecture. Ann. Math. 179(2), 683–782 (2014)
    • Marques, F.C., Neves, A., Song, A.: Equidistribution of minimal hypersurfaces for generic metrics. Invent. Math. 216(2), 421–443 (2019)
    • Nakaoka, M.: Cohomology mod p of symmetric products of spheres. J. Inst. Polytech. Osaka City Univ. Ser. A 9, 1–18 (1958)
    • Nabutovsky, A., Rotman, R.: Volume, diameter and the minimal mass of a stationary 1-cycle. Geom. Funct. Anal. 14, 748–790 (2004)
    • Nabutovsky, A., Parsch, F.: Geodesic nets: some examples and open problems. Exp. Math. (2020). https://doi.org/10.1080/10586458.2020.1743216
    • Pitts, J.: Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. Mathematical Notes 27, Princeton University Press, Princeton...
    • Simon, L.: Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra...
    • Smale, S.: An infinite dimensional version of Sard’s theorem. Amer. J. Math. 87, 861–8 (1965)
    • Staffa, B.: Bumpy metrics theorem for stationary geodesic nets, preprint, https://arxiv.org/abs/2107.12446 (2021)
    • Song, A.: Existence of infinitely many minimal hypersurfaces in closed manifolds, preprint, https://arxiv.org/abs/1806.08816
    • Song, A.: A dichotomy for minimal hypersurfaces in manifolds thick at infinity, preprint, https://arxiv.org/abs/1902.06767 (2019)
    • White, B.: The Space of Minimal Submanifolds for Varying Riemannian Metrics. Indiana Univ. Math. J. 36(3), 567–602 (1987)
    • White, B.: On the bumpy metrics theorem for minimal submanifolds. Amer. J. Math. 139(4), 1149–55 (2017)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno