Ir al contenido

Documat


On rank in algebraic closure

  • Amichai Lampert [1] ; Tamar Ziegler [2]
    1. [1] University of Michigan–Ann Arbor

      University of Michigan–Ann Arbor

      City of Ann Arbor, Estados Unidos

    2. [2] Hebrew University of Jerusalem

      Hebrew University of Jerusalem

      Israel

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 1, 2024, 19 págs.
  • Idioma: inglés
  • DOI: 10.1007/s00029-023-00903-5
  • Enlaces
  • Resumen
    • Let k be a field and Q ∈ k[x1,..., xs] a form (homogeneous polynomial) of degree d > 1. The k-Schmidt rank rkk(Q) of Q is the minimal r such that Q = r i=1 Ri Si with Ri, Si ∈ k[x1,..., xs] forms of degree < d. When k is algebraically closed and char(k) doesn’t divide d, this rank is closely related to codimAs (∇Q(x) = 0) - also known as the Birch rank of Q. When k is a number field, a finite field or a function field, we give polynomial bounds for rkk(Q) in terms of rkk¯(Q) where k¯ is the algebraic closure of k. Prior to this work no such bound (even ineffective) was known for d > 4. This result has immediate consequences for counting integer points (when k is a number field) or prime points (when k = Q) of the variety (Q = 0) assuming rkk(Q) is large.

  • Referencias bibliográficas
    • Adiprasito, K., Kazhdan, D., Ziegler, T.: On the Schmidt and analytic ranks for trilinear forms. arXiv preprint arXiv:2102.03659 (2021)
    • Birch, B.J.: Forms in many variables. Proceedings of the Royal Society of London. Series A. Math. Phys. Sci. 265(1321), 245–263 (1962)
    • Cohen, A., Moshkovitz, G.: An optimal inverse theorem. arXiv preprint arXiv:2102.10509 (2021)
    • Cook, B., Magyar, Akos: Diophantine equations in the primes. Invent. Math. 198, 12 (2013)
    • Derksen, Harm: The g-stable rank for tensors and the cap set problem. Algebra Number Theory 16(5), 1071–1097 (2022)
    • Eisenbud, D.: Commutative algebra: with a view toward algebraic geometry, vol. 150. Springer Science and Business Media, Berlin/Heidelberg...
    • Frei, C., Madritsch, Manfred: Forms of differing degrees over number fields. Mathematika 63(1), 92–123 (2017)
    • Janzer, O.: Polynomial bound for the partition rank vs the analytic rank of tensors. Discrete Anal., pages Paper No. 7, 18 (2020)
    • Kazhdan, D., Lampert, A., Polishchuk, A.: Schmidt rank and singularities. arXiv e-prints, page arXiv:2104.10198 (April 2021)
    • Kazhdan, D., Polishchuk, A.: Schmidt rank of quartics over perfect fields. Israel J. Math. 1–19 (2022)
    • Kazhdan, D., Ziegler, T.: Approximate cohomology. Selecta Mathematica 24(1), 499–509 (2017)
    • Kazhdan, D., Ziegler, T.: Applications of algebraic combinatorics to algebraic geometry. Indagat. Mathematicae 32(6), 1412–1428 (2021)
    • Lee, S.-L. A.: Birch’s theorem in function fields. arXiv preprint arXiv:1109.4953 (2011)
    • Marker, D.: Model theory: an introduction, vol. 217. Springer Science & Business Media, Berlin/Heidelberg (2006)
    • Mili´cevi´c, Luka: Polynomial bound for partition rank in terms of analytic rank. Geom. Funct. Anal. 29, 10 (2019)
    • Schmidt, Wolfgang M.: The density of integer points on homogeneous varieties. Acta Math. 154(3–4), 243–296 (1985)
    • Skinner, C.: Forms over number fields and weak approximation. Compositio Mathematica 106, 11–29 (1997). (03)
    • Xiao, S.Y., Yamagishi, Shuntaro: Zeroes of polynomials with prime inputs and Schmidt’s invariant. Can. J. Math. 72(3), 805–833 (2020)
    • Yamagishi, S.: Prime solutions to polynomial equations in many variables and differing degrees. In: Forum of Mathematics, Sigma, volume 6....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno