Ir al contenido

Documat


Berge equilibria and the equilibria of the altruistic game

  • A. Zapata [1] ; A. M. Mármol [1] ; L. Monroy [1]
    1. [1] Universidad de Sevilla

      Universidad de Sevilla

      Sevilla, España

  • Localización: Top, ISSN-e 1863-8279, ISSN 1134-5764, Vol. 32, Nº. 1, 2024, págs. 83-105
  • Idioma: inglés
  • DOI: 10.1007/s11750-023-00659-3
  • Enlaces
  • Resumen
    • Berge’s notion of equilibrium represents a complementary alternative to the Nash equilibrium when modeling socioeconomic behavior and human interactions. While the notion of Nash equilibrium is based on self-interest, as players seek to maximize their own payofs given the action of the other players, the idea behind Berge equilibrium is mutual support, as given the action of one of the players, all others select their actions looking for her best interest. However, because of the demanding conditions involved, the existence of Berge equilibria is rarely guaranteed. In this paper, we propose vector-valued normal-form games as a unifed framework in which to study and extend the concept of Berge equilibrium. Based on the equilibria of the so-called altruistic game, we introduce new equilibrium concepts which constitute diferent relaxations of Berge’s notion, although they still retain the underlying idea of mutual support. We establish the links between these new equilibria, Nash equilibrium, Berge equilibrium, and other related concepts already existing in the literature. Our approach has the advantage that it permits the incorporation of preference information to identify the equilibria which are consistent with diferent altruistic attitudes of the players.

  • Referencias bibliográficas
    • Abalo KY, Kostreva MM (2005) Berge equilibrium: some recent results from fxed-point theorems. Appl Math Comput 169:624–638. https://doi.org/10.1016/j.amc.2004.09.080...
    • Bade S (2005) Nash equilibrium in games with incomplete preferences. Econ Theor 26:309–332. https:// doi.org/10.1007/s00199-004-0541-1
    • Berge C (1957) Théorie Générale des Jeux à n-Personnes [General Theory of n-person Games]. Paris: Gauthier Villars. http://numdam.org/item/MSM_1957_138_1_0...
    • Colman A, Körner T, Musy O, Tazdaït T (2011) Mutual support in games: some properties of Berge equilibria. J Math Psychol 55:166–175. https://doi.org/10.1016/j.jmp.2011.02.001...
    • Corley H (2015) A mixed cooperative dual to the Nash equilibrium. Game Theor. https://doi.org/10.1155/ 2015/647246
    • Courtois P, Nessah R, Tazdaït T (2015) How to play games? Nash versus Berge equilibria. Econ Philos 31:123–139. https://doi.org/10.1017/S026626711400042X...
    • Courtois P, Nessah R, Tazdaït T (2017) Existence and computation of Berge equilibrium and of two refnements. J Math Econ 72:7–15. https://doi.org/10.1016/j.jmateco.2017.04.004...
    • Crettez B (2017) A new sufcient condition for a Berge equilibrium to be a Berge-Vaisman equilibrium. J Quant Econ 15:451–459. https://doi.org/10.1007/s40953-016-0066-z...
    • Crettez B, Nessah R (2020) On the existence of unilateral support equilibrium. Math Soc Sci 105:41–47. https://doi.org/10.1016/j.mathsocsci.2020.04.004...
    • Deghdak M, Florenzano M (2011) On the existence of Berge’s strong equilibrium. Int Game Theor Rev 13:325–340. https://doi.org/10.1142/S0219198911003027...
    • Enkhbat R, Sukhee S (2021) Optimization approach to Berge equilibrium for bimatrix game. Optim Lett 15:711–718. https://doi.org/10.1007/s11590-020-01688-8...
    • Kudryavtsev K, Ukhobotov V, Zhukovskiy V (2019) The Berge equilibrium in Cournot oligopoly model. In: Evtushenko Y, Jaćimović M, Khachay M,...
    • Larbani M, Nessah R (2008) A note on the existence of Berge and Berge-Nash equilibria. Math Soc Sci 55:258–271. https://doi.org/10.1016/j.mathsocsci.2007.07.004
    • Larbani M, Zhukovskii VI (2017) Berge equilibrium in normal form static games: a literature review. Izv Inst Mat Inform Udmurt Gos Univ 49:80–110. ...
    • Mármol AM, Monroy L, Caraballo MA, Zapata A (2017) Equilibria with vector-valued utilities and preference information. The ana Musy O, Pottier...
    • Nash J (1951) Non-cooperative games. Ann Math 54:286–295. https://doi.org/10.2307/1969529
    • Nessah R, Larbani M (2014) Berge-Zhukovskii equilibria: existence and characterization. Int Game Theor Rev 16:1450012. https://doi.org/10.1142/S0219198914500121...
    • Pottier A, Nessah R (2014) Berge-Vaisman and Nash equilibria : transformation of games. Int Game Theor Rev 16:1–8. https://doi.org/10.1142/S0219198914500091...
    • Safatly E, Abdou JJ (2021) A new tensor approach of computing pure and mixed unilateral support equilibria. RAIRO Oper Res 55:395–413. https://doi.org/10.1051/ro/2021002...
    • Salukvadze ME, Zhukovskiy VI (2020) The Berge equilibrium: a game-theoretic framework for the golden rule of ethics. Static and dynamic game...
    • Schouten J, Borm PEM, Hendrickx RLP (2019) Unilateral support equilibria. J Math Psychol 93:102295. https://doi.org/10.1016/j.jmp.2019.102295...
    • Shapley L (1959) Equilibrium points in games with vector payof. Naval Res Logist Quat 6:57–61. https://doi.org/10.1002/nav.3800060107
    • Vaisman KS (1994) The Berge Equilibrium for Linear-Quadratic Diferential Games. The 3-rd International Workshop on Multiple Criteria Problems...
    • Vaisman KS, Zhukovskiy VI (1994) The Berge Equilibrium under Uncertainty, The 3rd International Workshop on Multiple Criteria Problems under...
    • Voorneveld M, Grahn S, Dufwenberg M (2000) Ideal equilibria in noncooperative multicriteria games. Math Methods Oper Res 52:65–77. https://doi.org/10.1007/s001860000069
    • Wang SY (1993) Existence of Pareto equilibrium. J Optim Theory Appl 79:373–384. https://doi.org/10. 1007/BF00940586
    • Zhukovskiy VI (1985) Some problems of non-antagonistic diferential games. In: Kenderov P (ed) Matematiceskie Metody v Issledovanii Operacij...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno