Ir al contenido

Documat


Qualitative Properties and Optimal Control Strategy on a Novel Fractional Three-Species Food Chain Model

  • Autores: R.N. Premakumari, Chandrali Baishya, Shahram Rezapour, Manisha Krishna Naik, Zaher Mundher Yaseem, Sina Etemad
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01110-z
  • Enlaces
  • Resumen
    • In this study, the dynamics of a novel three-species food chain model featuring the Sokol–Howell functional response are explored. The fear of predators is incorporated into prey reproduction, and refuge is integrated into the middle predators within the framework of the Caputo fractional derivative. Theoretical aspects such as the existence and uniqueness of equilibria, their boundedness, and stability analysis are encompassed in the investigation. To examine the existence of chaos, Lyapunov exponents are computed. The optimal control measure concerning the growth of the prey population was considered, and the conditions that must be met for the optimal response to exist in the optimal control issue were determined using Pontryagin’s Maximum Principle. The theoretical outcomes were validated by using numerical simulation powered by the Adams–Bashforth–Moulton type predictor-corrector technique.

      Numerical justifications are provided for the influences of fear and refuge factors. When fear is absent, a numerical analysis is conducted on the global stability of the system for fractional order derivative.

  • Referencias bibliográficas
    • 1. Malthus, T.R.: An essay on the principle of population. Reprinted from 1798 edition, Johnson, London, as. Malthus-population: the first...
    • 2. Verhulst, P.-F.: Notice sur la loi que la population suit dans son accroissement. Correspondence Mathematique et Physique 10, 113–129 (1838)
    • 3. Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins (1925)
    • 4. Volterra,V.:Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, vol. 2. Societá anonima tipografica “Leonardo...
    • 5. Samardzija, N., Greller, L.D.: Explosive route to chaos through a fractal torus in a generalized Lotka– Volterra model. Bull. Math. Biol....
    • 6. Cui, Q., Xu, C., Ou, W., Pang, Y., Liu, Z., Li, P., Yao, L.: Bifurcation behavior and hybrid controller design of a 2D Lotka–Volterra commensal...
    • 7. Ou, W., Xu, C., Cui, Q., Pang, Y., Liu, Z., Shen, J., Baber, M.Z., Farman, M., Ahmad, S., Ou, W., Xu, C., Cui, Q., Pang, Y., Liu, Z., Shen,...
    • 8. Rihan, F.A., Alsakaji, H.J.: Stochastic delay differential equations of three-species prey–predator system with cooperation among prey...
    • 9. Xu, C., Pang, Y., Liu, Z., Shen, J., Liao, M., Li, P.: Insights into COVID-19 stochastic modelling with effects of various transmission...
    • 10. Xu, C., Zhao, Y., Lin, J., Pang, Y., Liu, Z., Farman, M., Ahmad, S.: Mathematical exploration on control of bifurcation for a plankton-oxygen...
    • 11. Xu, C., Cui, Q., Liu, Z., Pan, Y., Cui, X., Ou, W., Rahman, M., Farman, M., Ahmad, S., Zeb, A.: Extended hybrid controller design of bifurcation...
    • 12. Hua, F., Sieving, K.E., Fletcher, J., Robert, J., Wright, C.A.: Increased perception of predation risk to adults and offspring alters...
    • 13. Wang, J., Cai, Y., Fu, S., Wang, W.: The effect of the fear factor on the dynamics of a predator–prey model incorporating the prey refuge....
    • 14. Zhang, H., Cai, Y., Fu, S.,Wang,W.: Impact of the fear effect in a prey–predator model incorporating a prey refuge. Appl. Math. Comput....
    • 15. Hossain, M., Pal, N., Samanta, S.: Impact of fear on an eco-epidemiological model. Chaos Solitons Fractals 134, 109718 (2020)
    • 16. Belew, B., Melese, D.: Modeling and analysis of predator–prey model with fear effect in prey and hunting cooperation among predators and...
    • 17. Tian, Y., Li, H.M.: The study of a predator–prey model with fear effect based on state-dependent harvesting strategy. Complexity 2022,...
    • 18. Haque, M., Sarwardi, S.: Dynamics of a harvested prey–predator model with prey refuge dependent on both species. Int. J. Bifurc. Chaos...
    • 19. Sih, A.: Prey refuges and predator–prey stability. Theor. Popul. Biol. 31(1), 1–12 (1987)
    • 20. Ma, Z., Wang, S., Li, W., Li, Z.: The effect of prey refuge in a patchy predator–prey system. Math. Biosci. 243(1), 126–130 (2013)
    • 21. Kar, T.K.: Stability analysis of a prey–predatormodel incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 10(6), 681–691...
    • 22. Ko,W., Ryu, K.: Qualitative analysis of a predator–prey modelwith Holling type II functional response incorporating a prey refuge. J....
    • 23. Premakumari, R.N., Baishya, C., Kaabar, M.: Dynamics of a fractional plankton-fish model under the influence of toxicity, refuge, and...
    • 24. Seo, G., Deangelis, D.: A predator–prey model with a Holling type I functional response including a predator mutual interference. J. Nonlinear...
    • 25. Achar, S.J., Baishya, C., Veeresha, P., Akinyemi, L.: Dynamics of fractional model of biological pest control in tea plants with Beddington–DeAngelis...
    • 26. Upadhyay, R., Raw, S.: Complex dynamics of a three species food-chain model with Holling type IV functional response. Nonlinear Anal....
    • 27. Sokol,W., Howell, J.: Kinetics of phenol oxidation by washed cells. Biotechnol. Bioeng. 23(9), 2039– 2050 (1981)
    • 28. Ali, S., Arifin, N., Naji, R., Ismail, F., Bachok, N.: Controlling chaotic dynamics of a continuous ecological model. Int. J. Pure Appl....
    • 29. Alsakaji, H., Kundu, S., Rihan, F.: Delay differential model of one-predator two-prey system with Monod–Haldane and Holling type II functional...
    • 30. Rihan, F.A., Rajivganthi, C.: Dynamics of fractional-order delay differential model of prey–predator system with Holling-type III and...
    • 31. Priyadarshi, A., Gakkhar, S.: Dynamics of Leslie–Gower type generalist predator in a tri-trophic food web system. Commun. Nonlinear Sci....
    • 32. Li, P., Gao, R., Xu, C., Shen, J., Ahmad, S., Li, Y.: Exploring the impact of delay on Hopf bifurcation of a type of BAM neural network...
    • 33. Zafar, Z., Yusuf, A., Musa, S., Qureshi, S., Alshomrani, A., Baleanu, D.: Impact of public health awareness programs on covid-19 dynamics:...
    • 34. Tassaddiq, A., Qureshi, S., Soomro, A., Arqub, O.A., Senol, M.: Comparative analysis of classical and Caputo models for COVID-19 spread:...
    • 35. Chinnamuniyandi, M., Chandran, S., Xu, C.: Fractional order uncertain BAM neural networks with mixed time delays: an existence and quasi-uniform...
    • 36. Tariq, M., Ahmad, H., Shaikh, A., Ntouyas, S., Hincal, E., Qureshi, S.: Fractional Hermite–Hadamardtype inequalities for differentiable...
    • 37. Baishya, C., Achar, S.J., Veeresha, P., Prakasha, D.G.: Dynamics of a fractional epidemiological model with disease infection in both...
    • 38. Akinyemi, L., Iyiola, O.: Exact and approximate solutions of time-fractional models arising from physics via Shehu transform. Math. Methods...
    • 39. Shah, S.M.A., Tahir, H., Khan, A., Khan, W.A., Arshad, A.: Stochastic model on the transmission of worms in wireless sensor network. J....
    • 40. Baishya, C., Premakumari, R.N., Samei, M.:Chaos control of fractional order nonlinear Bloch equation by utilizing sliding mode controller....
    • 41. Ain, Q.T.: Nonlinear stochastic cholera epidemic model under the influence of noise. J. Math. Tech. Model. 1(1), 52–74 (2024)
    • 42. Veeresha, P., Baleanu, D.: A unifying computational framework for fractional Gross–Pitaevskii equations. Phys. Scr. 96, 125010 (2021)
    • 43. Premakumari, R.N., Baishya, C., Veeresha, P., Akinyemi, L.: A fractional atmospheric circulation system under the influence of a sliding...
    • 44. Din, A., Li, Y., Yusuf, A.: Delayed hepatitis B epidemicmodel with stochastic analysis. Chaos Solitons Fractals 146, 110839 (2021)
    • 45. Din, A.: Bifurcation analysis of a delayed stochastic HBV epidemic model: cell-to-cell transmission. Chaos Solitons Fractals 181, 114714...
    • 46. Khan, F.M., Khan, Z.U., Abdullah: Numerical analysis of fractional order drinking mathematical model. J. Math. Tech. Model. 1(1), 11–24...
    • 47. Khan, W.A., Zarin, R., Zeb, A., Khan, Y., Khan, A.: Navigating food allergy dynamics via a novel fractional mathematical model for antacid-induced...
    • 48. Alidousti, J., Mostafavi, M.: Dynamical behavior of a fractional three-species food chain model. Nonlinear Dyn. 95, 1841 (2019)
    • 49. Devi, A., Kumar, A., Baleanu, D., Khan, A.: On stability analysis and existence of positive solutions for a general non-linear fractional...
    • 50. Devi, A., Kumar, A., Abdeljawad, T., Khan, A.: Stability analysis of solutions and existence theory of fractional Lagevin equation. Alex....
    • 51. Xu, C., Liu, Z., Li, P., Yan, J., Yao, L.: Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks. Neural...
    • 52. Mahmoud, E., Trikha, P., Jahanzaib, L., Almaghrabi, O.: Dynamical analysis and chaos control of the fractional chaotic ecological model....
    • 53. Shah, A., Khan, R.A., Khan, A., Khan, H., Gomez-Aguilar, J.F.: Investigation of a system of nonlinear fractional order hybrid differential...
    • 54. Cui, Z., Zhou, Y., Li, R.: Complex dynamics analysis and Chaos control of a fractional-order threepopulation food chain model. Fractal...
    • 55. Aslam, M., Murtaza, R., Abdeljawad, T., Rahman, G., Khan, A., Khan, H., Gulzar, H.: A fractional order HIV/AIDS epidemic model with Mittag-Leffler...
    • 56. Padder, A., Almutairi, L., Qureshi, S., Soomro, A., Afroz, A., Hınçal, E., Tassaddiq, A.: Dynamical analysis of generalized tumor model...
    • 57. May, R., Allen, P.: Stability and complexity in model ecosystems. IEEE Trans. Syst. Man Cybern. SMC-6(12), 887-887 (1976)
    • 58. Xu, C., Liao, M., Li, P., Yao, L., Qin, Q., Shang, Y.: Chaos control for a fractional-order Jerk system via time delay feedback controller...
    • 59. Johansyah, D., Sambas, A., Qureshi, S., Zheng, S., Alsbagh, T., Vaidyanathan, S., Ibrahim, S.: Investigation of the hyperchaos and control...
    • 60. Ding, Y., Wang, Z., Ye, H.: Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Control Syst. Technol. 20(05),...
    • 61. Ullah, S., Khan, M.A.: Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control...
    • 62. Shen, Z.-H., Chu, Y.-M., Khan, M.A., Muhammad, S., Al-Hartomy, O.A., Higazy, M.: Mathematical modeling and optimal control of the COVID-19...
    • 63. Din, A.: The stochastic bifurcation analysis and stochastic delayed optimal control for epidemic model with general incidence function....
    • 64. Awadalla, M., Alahmadi, J., Cheneke, K.R., Qureshi, S.: Fractional optimal control model and bifurcation analysis of human syncytial respiratory...
    • 65. Ali, S., Khan, A., Shah, K., Alqudah, M.A., Abdeljawad, T., Siraj-ul-IslamOn: computational analysis of highly nonlinear model addressing...
    • 66. Qureshi, S., Ramos, H., Soomro, A., Akinfenwa, O.A., Akanbi, M.A.: Numerical integration of stiff problems using a new time-efficient...
    • 67. Qureshi, S., Soomro, A., Naseem, A., Gdawiec, K., Argyros, I.K., Alshaery, A.A., Secer, A.: From Halley to Secant: redefining root finding...
    • 68. Podlubny, I.: Fractional Differential Equations. Academic Press (1999)
    • 69. Li, H.-L., Zhang, L., Hu, C., Jiang, Y.-L., Teng, Z.: Dynamical analysis of a fractional-order predator– prey model incorporating a prey...
    • 70. Jodar, L., Villanueva, R.J., Arenas, A.J., Gonalez, G.C.: Nonstandard numerical methods for a mathematical model for influenza disease....
    • 71. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)
    • 72. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno