Ir al contenido

Documat


On Double Homoclinic Bifurcation of Limit Cycles in Near-Hamiltonian Systems on the Cylinder

  • Ai Ke [1] ; Junmin Yang [2]
    1. [1] Zhejiang Normal University

      Zhejiang Normal University

      China

    2. [2] Hebei Normal University

      Hebei Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01107-8
  • Enlaces
  • Resumen
    • We study the bifurcation problem of limit cycles in near-Hamiltonian systems near a double homoclinic loop on the cylinder. We obtain a sufficient condition to find a lower bound of the maximal number of limit cycles near the loop by the coefficients of the expansions of the three Melnikov functions corresponding to the three families of periodic orbits near the double homoclinic loop. We also provide an application of our main results to a class of cylindrical systems.

  • Referencias bibliográficas
    • 1. Álvarez, M.J., Gasull, A., Prohens, R.: On the number of limit cycles of some systems on the cylinder. Bull. Sci. Math. 131, 620–637 (2007)
    • 2. Bakhshalizadeh, A., Llibre, J.: Limit cycles of piecewise differential equations on the cylinder. Bull. Sci. Math. 170, 103013 (2021)
    • 3. Baymout, L., Benterki, R., Llibre, J.: Limit cycles of some families of discontinuous piecewise differential systems separated by a straight...
    • 4. Buzzi, C.A., Carvalho, Y.R., Gasull, A.: Limit cycles for some families of smooth and non-smooth planar systems. Nonlinear Anal. 207, 112298...
    • 5. Cai, M., Han, M.: Limit cycle bifurcations near a double 2-polycycle on the cylinder. Commun. Nonlinear Sci. Numer. Simul. 130, 107737...
    • 6. Chen, H., Tang, Y.: Global dynamics of the Josephson equation in T S1. J. Differ. Equ. 269, 4884–4913 (2020)
    • 7. Gasull, A., Geyer, A., Mañosas, F.: On the number of limit cycles for perturbed pendulum equations. J. Differ. Equ. 261, 2141–2167 (2016)
    • 8. Gasull, A., Giné, J., Valls, C.: Center problem for trigonometric liénard systems. J. Differ. Equ. 263, 3928–3942 (2017)
    • 9. Grin, A.A., Rudevich, S.V.: Dulac–Cherkas test for determining the exact number of limit cycles of autonomous systems on the cylinder....
    • 10. Gasull, A., Giné, J., Valls, C.: Highest weak focus order for trigonometric liénard equations. Ann. Mat. 199, 1673–1684 (2020)
    • 11. Han, M.: Bifurcations of invariant tori and subharmonic solutions for periodic perturbed systems. Sci. China (Ser. A) 37, 1325–1336 (1994)
    • 12. Han, M.: Bifurcation Theory of Limit Cycles. Science Press, Beijing (2013)
    • 13. Han, M., Sheng, L.: Bifurcation of limit cycles in piecewise smooth systems via Melnikov function. J. Appl. Anal. Comput. 5, 809–815 (2015)
    • 14. Han, M., Yang, J., Li, J.: General study on limit cycle bifurcation near a double homoclinic loop. J. Differ. Equ. 347, 1–23 (2023)
    • 15. Han, M., Yang, J., Tar¸ta, A.A., Gao, Y.: Limit cycles near homoclinic and heteroclinic loops. J. Dynam. Differ. Equ. 20, 923–944 (2008)
    • 16. Jimenez, J., Llibre, J.: Limit cycles of polynomial differential systems of degree 1 and 2 on the cylinder. Sao Paulo J. Math. Sci. 17,...
    • 17. Li, J., Llibre, J.: Limit cycles of the discontinuous piecewise differential systems on the cylinder. J. Appl. Anal. Comput. 12, 952–963...
    • 18. Liu, S., Han, M.:Bifurcation theory of limit cycles by higher order Melnikov functions and applications. J. Differ. Equ. 403, 29–66 (2024)
    • 19. Liu,Y., Li, F.,Dang, P.: Bifurcation analysis in a class of piecewise nonlinear systemswith a nonsmooth heteroclinic loop. Int. J. Bifurc....
    • 20. Shi, Y., Han, M., Zhang, L.: Homoclinic bifurcation of limit cycles in near-Hamiltonian systems on the cylinder. J. Differ. Equ. 304,...
    • 21. Tian, Y., Han, M.: Hopf and homoclinic bifurcations for near-Hamiltonian systems. J. Differ. Equ. 262, 3214–3234 (2017)
    • 22. Xiong, Y.: On the number of limit cycles near a homoclinic loop with a nilpotent cusp of order m. J. Differ. Equ. 380, 146–180 (2024)
    • 23. Yang, J.: Bifurcation of limit cycles of a perturbed pendulum equation. J. Nonlinear Mod. Anal. 6, 371–391 (2024)
    • 24. Yang, J.: On the number of limit cycles of a pendulum-like equation with two switching lines. Chaos Solitons Fractals 150, 111092 (2021)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno