Ir al contenido

Documat


A Polynomial System of Degree Four with an Invariant Square Containing At Least Five Limit Cycles

  • Maite Grau [1] Árbol académico ; Iván Szántó [2]
    1. [1] Universitat de Lleida

      Universitat de Lleida

      Lérida, España

    2. [2] Universidad Técnica Federico Santa María
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We consider a class of polynomial systems of degree four with four real invariant straight lines that form a square, called this an invariant square, and also that contains in its interior at least five small amplitude limit cycles for a certain choice of the parameters. Moreover, we will obtain the necessary and sufficient conditions for the critical point inside the square to be a center.

  • Referencias bibliográficas
    • 1. Artés, J., Grünbaum, B., Llibre, J.: On the number of invariant straight lines for polynomial differential systems. Pacific J. Math. 184,...
    • 2. Xikang, Z.: Number of integral lines of polynomial systems of degree three and four. J. Nanying Univ. Math. Biquart. 10, 209–212 (1993)
    • 3. Sokulski, J.: On the number of invariant lines of polynomial fields. Nonlinearity 9, 479–485 (1996)
    • 4. Li, M., Han, M.: On the number of limit cycles of a quartic polynomial system. Discrete Contin. Dyn. Syst. Ser. S 14, 3167–3181 (2021)
    • 5. Kooij, R.: Limit cycles in polynomial systems, thesis. University of Technology, Delft (1993)
    • 6. Liu, Z.H., Sáez, E., Szántó, I.: A system of degree four with an invariant triangle and at least three small amplitude limit cycles. Electron....
    • 7. Szántó, I.: A polynomial system of degree four with an invariant triangle containing at least four small amplitude limit cycles. Miskolc...
    • 8. Sáez, E., Stange, E., Szántó, I.: Coexistence of small and large amplitude limit cycles of polynomial differential systems of degree four....
    • 9. Poincaré, H.: Mémoire sur les courbes définies par les équations différentielles, J. Math. Pures Appl. (3) 7 (1881), 375-422; 8 (1882),...
    • 10. Wolfram Research Mathematica: A System for Doing Mathematics by Computer. Champaign, IL (1988)
    • 11. Marsden, J.E., McCracken, M.: The Hopf Bifurcation and Its Applications, Applied Mathematical Sciences, 19th edn. Springer-Verlag, New...
    • 12. Yanqian, Y.: Cubic Kolmogorov system having three straight line integrals forming a triangle. Ann. Diff. Eqs. 6(3), 365–372 (1990)
    • 13. Li, X., Yang, H., Wang, B.: Limit cycles and invariant curves in a class of switching systems with degree four. J. Funct. Spaces. (2018)....
    • 14. Liu, Z.H., Sáez, E., Szántó, I.: A cubic system with an invariant triangle surrounding at least one limit cycle. Taiwan. J. Math. 7(2),...
    • 15. Llibre, J., Rodrígues, A.: Periodic orbits for real planar polynomial vector fields of degree n having n invariant straight lines taking...
    • 16. Bautin, N.N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center...
    • 17. Gasull, A., Giné, J.: Cyclicity versus Center Problem. Qual. Theory Dyn. Syst. 9, 101–113 (2010)
    • 18. Chavarriga, J., Giacomini, H., Giné, J., Llibre, J.: On the integrability of two-dimensional flows. J. Differ. Equ. 157, 163–182 (1999)
    • 19. Krantz, S.G., Parks, H.R.: The Implicit Function Theorem.History, Theory, andApplications. Springer, New York (2013)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno