Ir al contenido

Documat


Pullback Measure Attractors for Non-autonomous Stochastic 3D Globally Modified Navier–Stokes Equations

  • Ran Li [1] ; Shaoyue Mi [1] ; Dingshi Li [1]
    1. [1] Southwest Jiaotong University

      Southwest Jiaotong University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01105-w
  • Enlaces
  • Resumen
    • This paper investigates the existence and upper semi-continuity of the pullback measure attractors of the non-autonomous stochastic 3D globally modified Navier–Stokes equations driven by nonlinear noise. Firstly, we introduce the abstract theory of pullback measure attractors and asymptotic compactness of such equations. Then, the existence of the pullback measure attractors is shown for such equations. Furthermore, the upper semi-continuity of these attractors is also obtained as the noise intensity tends to zero.

  • Referencias bibliográficas
    • 1. Brze´zniak, Z., Caraballo, T., Langa, J., Li, Y., Lukaszewica, G., Real, J.: Random attractors for stochastic 2D-Navier–Stokes equations...
    • 2. Caraballo, T., Chen, Z., Yang, D.D.: Stochastic 3D globally modified Navier–Stokes equations: weak attractors, invariant measures and large...
    • 3. Chen, L.F., Dong, Z., Jiang, J.F., Zhai, J.L.: On limiting behavior of stationary measures for stochastic evolution systems with small...
    • 4. Constantin, P., Foias, C.: Stokes, Navier: Equations, Chicago Lectures in Mathematics. Universityof Chicago Press, Chicago (1988)
    • 5. Constantin, P.: Near identity transformations for the Navier–Stokes equations, Handbook of Mathematical. Fluid Dyn. 2, 117–141 (2003)
    • 6. Caraballo, T., Real, J.: Attractors for 2D-Navier–Stokes models with delays. J. Differ. Equ. 205, 271– 297 (2004)
    • 7. Caraballo, T., Real, J., Kloeden, P.E.: Unique strong solutions and V-attractors of a three dimensional system of globally modified Navier–Stokes...
    • 8. Caraballo, T., Márquez, A.M., Real, J.: Three dimensional system of globally modified Navier–Stokes equations with delay. Int. J. Bifurc....
    • 9. Chepyzhov, V., Vishik, M.: Trajectory attractorsfor 2D Navier–Stokes systems and some generalizations. Math. Topol. Methods Nonlinear Anal....
    • 10. Caraballo, T., Chen, Z., Yang, D.: Random dynamics and limiting behaviors for 3D globally modifed Navier–Stokes equations driven by colored...
    • 11. Dong, B.Q., Song, J.: Global regularity and asymptotic behavior of modified Navier–Stokes equations with fractional dissipation. Discrete...
    • 12. Da Prato, G., Debussche, A.: 2D stochastic Navier–Stokes equations with a time-periodicforcing term. J. Dyn. Differ. Equ. 20, 301–335...
    • 13. Flandoli, F., Schmalfuss, B.: Random attractors for the 3D stochastic Navier–Stokes equation with multiplicative white noise. Stoch. Stoch....
    • 14. Flandoli, F.,Maslowski, B.: Ergodicity of the 2-D Navier–Stokes equation under random perturbations. Commun. Math. Phys. 172, 119–141...
    • 15. Foias, C., Manley, O., Rose, R., Temam, R.: Navier–Stokes Equations and Turbulence, Encyclopedia of Mathematics and its Applications,...
    • 16. Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. Ann. Math. 164, 993–1032...
    • 17. Holst, M., Lunasin, E., Tsogtgerel, G.: Analysis of a general family of regularized Navier–Stokes and MHD models. J. Nonlinear Sci. 20,...
    • 18. Han, Z.,Zhou, S.: Random exponential attractor for the 3Dnon-autonomous stochastic damped Navier– Stokes equation. J. Dyn. Differ. Equ....
    • 19. Kuksin, G.S., Shirikyan, A.: Mathematics of Two-Dimensional Turbulence (2012)
    • 20. Kinra, K., Mohan, M.T.: Large time behavior of deterministic and stochastic 3D convective Brinkman– Forchheimer equations in periodic...
    • 21. Kinra, K., Mohan, M.T.: Existence and upper semicontinuity of random attractors for the 2D stochastic convective Brinkman–Forchheimer...
    • 22. Kinra, K., Mohan, M.T.: Existence and upper semicontinuity of random pullback attractors for 2D and 3D non-autonomous stochastic convective...
    • 23. Kloeden, P.E., Langa, J.A., Real, J.: Equivalence of invariant measures and stationary statistical solutiond for the autonomous globally...
    • 24. Li, D.S., Wang, B.X.: Pullback measure attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. J. Differ....
    • 25. Lu, S.S., Wu, H.Q., Zhong, C.K.: Attractors for nonautonomous 2D Navier–Stockes equations with normal external forces. Discrete Contin....
    • 26. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)
    • 27. Li, D.S., Wang, B.X., Wang, X.H.: Limiting behavior of invariant measures of stochastic delay lattice systems. J. Dyn. Differ. Equ. 34,...
    • 28. Liu, R., Lu, K.: Statistical properties of 2D stochastic Navier-Stokes equations with time- periodic forcing and degenerate stochastic...
    • 29. Mi, S.Y., Li, D.S., Zeng, T.H.: Pullback measure attractors for non-autonomous stochastic lattice systems
    • 30. Morimoto, H.: Attractors of probability measures for semilinear stochastic evolution equations. Stoch. Anal. Appl. 10, 205–212 (1992)
    • 31. Mattingly, J.C.: Ergodicity of 2D Navier–Stokes equations with random forcing and largeviscosity. Commun. Math. Phys. 206, 273–288 (1999)
    • 32. Mattingly, J.C.: Exponential convergence for the stochastically forced Navier–Stokes equations and other partially dissipative dynamics....
    • 33. Marek, C.,Cutland, N.J.: Measure attractors for stochastic Navier–Stokes equations.Electron J. Probab. 3, 1–15 (1998)
    • 34. Schmalfuss, B.: Long-time bahaviour of the stochastic Navier–Stokes equation. Math. Nachr. 152, 7–20 (1991)
    • 35. Schmalfuss, B.: Qualitative properties for the stochastic Navier–Stokes equation. Nonlinear Anal. Theory Methods Appl. 28, 1545–1563 (1997)
    • 36. Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis, 2nd edn. North Holland, Amsterdam (1979)
    • 37. Temam, R.:Navier–Stokes Equations andNonlinear FunctionalAnalysis, 2nd edn. SIAM, Philadelphia (1995)
    • 38. Wang, B.X.: Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J. Differ....
    • 39. Wang, B.X.: Periodic random attractors for stochastic Navier–Stokes equations on unbounded domains. Electron. J. Difer. Equ. 59, 1–18...
    • 40. Wang, S., Si, M., Yang, R.: Random attractors for non-autonomous stochastic Navier–Stokes-Voigt equations in some unbounded domains. Commun....
    • 41. Wang, R.,Guo, B., Liu,W., Nguyen, D.: Fractal dimension of random invariant sets and regular random attractors for stochastic hydrodynamical...
    • 42. Yang, D., Chen, Z., Caraballo, T.: Dynamics of a globally modifed Navier–Stokes model with double delay. Z. Angew. Math. Phys. 216, 1–32...
    • 43. Yang, D., Chen, Z., Caraballo, T.: The periodic and limiting behaviors of invariant measures for 3D globally modifed Navier–Stokes equations....
    • 44. Yang, S., Caraballo, T., Li, Y.: Dynamics and stability analysis for stochastic 3D Lagrangian-averaged Navier–Stokes equations with infinite...
    • 45. Zhao,C.,Yang, L.: Pullback attractors and invariantmeasures for the non-autonomous globally modifed Navier–Stokes equations. Commun. Math....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno