Ir al contenido

Documat


Persistence of the Non-twist Degenerate Lower Dimensional Invariant Torus in Reversible Systems

  • Xiaomei Yang [1] ; Junxiang Xu [2]
    1. [1] Nanjing University

      Nanjing University

      China

    2. [2] Southeast University

      Southeast University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01108-7
  • Enlaces
  • Resumen
    • In this paper,we consider nearly integrable reversible systems,whose unperturbed part has a degenerate equilibrium point and a degenerate frequency mapping. Based on the topological degree theory and some KAM techniques, we prove that the non-twist lower dimensional invariant torus with prescribed frequencies persists under small perturbations.

  • Referencias bibliográficas
    • 1. Bruno, A.D.: Analytic form of differential equations. Trans. Moscow Math. Soc. 25, 131–288 (1971)
    • 2. Bruno, A.D.: Analytic form of differential equations. Trans. Moscow Math. Soc. 26, 199–239 (1972)
    • 3. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)
    • 4. García, C.B., Li, T.Y.: On the number of solutions to polynomial systems of equations. SIAM J.Numer. Anal. 17, 540–546 (1980)
    • 5. Hu, S.-Q., Liu, B.: Completely degenerate lower-dimensional invariant tori for Hamiltonian system. J. Differ. Equ. 266(11), 7459–7480 (2019)
    • 6. Li, X.-M., Shang, Z.-J.: Quasi-periodic solutions for differential equations with an elliptic-type degenerate equilibrium point under small...
    • 7. Liu, B.: On lower dimensional invariant tori in reversible systems. J. Differ. Equ. 176, 158–194 (2001)
    • 8. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)
    • 9. Pöschel, J.: A lecture on the classical KAM theorem. In: Smooth Ergodic Theory and Its Applications. Proceedings of the Symposium Pure...
    • 10. Rüssmann, H.: Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regul. Chaotic Dyn. 6(2), 119–204 (2001)
    • 11. Sevryuk, M.B.: New results in the reversible KAM theory. In: Kuksin, S.B., Laztkin, V.F., Pöschel, J. (eds.) Seminar on Dynamical Systems,...
    • 12. Sevryuk, M.B.: Partial preservation of frequencies inKAMtheory. Nonlinearity 19, 1099–1140 (2006)
    • 13. Si, W., Si, J.: Construction of response solutions for two classes of quasi-periodically forced fourdimensional nonlinear systems with...
    • 14. Si, W., Si, J.: Response solutions and quasi-periodic degenerate bifurcations for quasi-periodically forced systems. Nonlinearity 31(6),...
    • 15. Si, W., Yi, Y.: Completely degenerate responsive tori in Hamiltonian systems. Nonlinearity 30(11), 6072–6098 (2020)
    • 16. Wang, X.-C., Xu, J.-X., Zhang, D.-F.: On the persistence of degenerate lower-dimensional tori in reversible systems. Ergod. Theory Dyn....
    • 17. Xu, J.-X., You, J.-G., Qiu, Q.-J.: Invariant tori for nearly integrable Hamiltonian systems with degeneracy. Math. Z. 226(3), 375–387...
    • 18. Xu, J.-X., You, J.-G.: Persistence of the non-twist torus in nearly integrable Hamiltonian systems. Proc. Am. Math. Soc. 138, 2385–2395...
    • 19. Xu, J.-X., You, J.-G.: Persistence of Hyperbolic-type Degenerate Lower-dimensional Invariant Tori with prescribed frequencies in Hamiltonian...
    • 20. Yang, X.-M., Xu, J.-X.: Persistence of multi-dimensional degenerate hyperbolic lower dimensional invariant tori in reversible systems....
    • 21. Zhang, D.-F., Qu, R.: Persistence of multiscale degenerate invariant Tori for reversible systems with multiscale degenerate equilibrium...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno