Ir al contenido

Documat


Quasi-periodic Response Solution to Scalar State-Dependent Delay Differential Equation with Degenerate Equilibrium

  • Xiaolong He [1] ; Feng Jin [1] ; Yongli Song [1]
    1. [1] Hangzhou Normal University

      Hangzhou Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01104-x
  • Enlaces
  • Resumen
    • We consider the state-dependent delay differential equation (SDDE) obtained by adding delayed perturbation to a one-dimensional ODE with a degenerate equilibrium.

      We prove the existence of the response solution of the equation, i.e., the quasi-periodic solution with the same frequency as the forcing. The novelty of our paper is to provide a concrete example to discuss the smoothness issues of SDDE, especially showing the analyticity of quasi-periodic solutions in some probability sense.

  • Referencias bibliográficas
    • 1. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces....
    • 2. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. II. Regularity with respect to parameters....
    • 3. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. III. Overview and applications. J. Differ....
    • 4. Calleja, R.C., Humphries, A.R., Krauskopf, B.: Resonance phenomena in a scalar delay differential equation with two state-dependent delays....
    • 5. Casal, A., Corsi, L., de la Llave, R.: Expansions in the delay of quasi-periodic solutions for state dependent delay equations. J. Phys....
    • 6. Cheng, H., de la Llave, R.,Wang, F.: Response solutions to the quasi-periodically forced systems with degenerate equilibrium: a simple...
    • 7. Corsi, L., Gentile, G.: Oscillator synchronisation under arbitrary quasi-periodic forcing. Comm. Math. Phys. 316(2), 489–529 (2012)
    • 8. de la Llave, R.: A tutorial on KAM theory. In: Smooth Ergodic Theory and Its Applications (Seattle, WA, 1999), volume 69 of Proc. Sympos....
    • 9. de la Llave, R., Obaya, R.: Regularity of the composition operator in spaces of Hölder functions. Discrete Contin. Dyn. Syst. 5(1), 157–184...
    • 10. Diekmann, O., van Gils, S.A., Verduyn L., Sjoerd M., Walther, H.-.: Delay equations, volume 110 of Applied Mathematical Sciences. Springer-Verlag,NewYork,...
    • 11. Gimeno, J.-P., Lessard, J., Mireles-James, J., Yang, J.: Persistence of periodic orbits under statedependent delayed perturbations: computer-assisted...
    • 12. Gimeno, J., Yang, J., de la Llave, R.: Numerical computation of periodic orbits and isochrons for statedependent delay perturbation of...
    • 13. Groothedde, C.M., Mireles-James, J.D.: Parameterization method for unstable manifolds of delay differential equations. J. Comput. Dyn....
    • 14. Guo, S.,Wu, J.: Bifurcation theory of functional differential equations.Applied Mathematical Sciences, Springer, New York (2013)
    • 15. Hale, J. K., Verduyn L., Sjoerd M.: Introduction to functional-differential equations. Applied Mathematical Sciences. Vol. 99, Springer-Verlag,...
    • 16. Haro, À., Canadell, M., Figueras, J.-L., Luque, A., Mondelo, J.-M.: The parameterization method for invariant manifolds, volume 195 of...
    • 17. Hartung, F., Krisztin, T.,Walther, H.-O.,Wu, J.: Functional differential equations with state-dependent delays: theory and applications....
    • 18. He, X.: Simultaneous conjugation of commuting foliation preserving torus maps. Proc. Amer. Math. Soc. 151(8), 3481–3492 (2023)
    • 19. He, X.: Quasi-periodic solutions for differential equations with an elliptic equilibrium under delayed perturbation. J. Differ. Equ. 380,...
    • 20. He, X., de la Llave, R.: Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization...
    • 21. He, X., de la Llave, R.: Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization...
    • 22. He, X., de la Llave, R.: Resonances and phase locking phenomena for foliation preserving torus maps. SIAM J. Appl. Dyn. Syst. 22(1), 382–418...
    • 23. He, X., Yuan, X.: Construction of quasi-periodic solutions for delayed perturbation differential equations. J. Differ. Equ. 268(12), 8026–8061...
    • 24. Hénot, O., Lessard, J.-P.,Mireles-James, J.D.: Parameterization of unstable manifolds for DDEs: formal series solutions and validated...
    • 25. Hu, Q., Wu, J., Zou, X.: Estimates of periods and global continua of periodic solutions for statedependent delay equations. SIAM J. Math....
    • 26. Krisztin, T.: C1-smoothness of center manifolds for differential equations with state-dependent delay. In Nonlinear dynamics and evolution...
    • 27. Krisztin, T.,Walther, H.-O.: Solution manifolds of differential systems with discrete stated-dependent delays are almost graphs. Discrete...
    • 28. Lanford, O.E.: Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Takens. In: Nonlinear Problems in the Physical...
    • 29. Li, X., de la Llave, R.: Construction of quasi-periodic solutions of delay differential equations via KAM techniques. J. Differ. Equ....
    • 30. Liu, J., Si, J.: Analytic solutions for a class of differential equation with delays depending on state. Appl. Math. Comput. 186(1), 261–270...
    • 31. Li, X., Shang, Z.: Quasi-periodic solutions for differential equations with an elliptic-type degenerate equilibrium point under small...
    • 32. Li, X., Yuan, X.: Quasi-periodic solutions for perturbed autonomous delay differential equations. J. Differ. Equ. 252(6), 3752–3796 (2012)
    • 33. Mallet-Paret, J., Nussbaum, R.D.: Stability of periodic solutions of state-dependent delay-differential equations. J. Differ. Equ. 250(11),...
    • 34. Mallet-Paret, J., Nussbaum, R.D.: Analyticity and nonanalyticity of solutions of delay-differential equations. SIAM J. Math. Anal. 46(4),...
    • 35. Mallet-Paret, J., Nussbaum, R.D.: Intricate structure of the analyticity set for solutions of a class of integral equations. J. Dyn. Differ....
    • 36. Mallet-Paret, J., Nussbaum, R.D.: Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete Contin....
    • 37. Müller-Bender, D., Radons, G.: Laminar chaos in systems with quasiperiodic delay. Phys. Rev. E 107(1), 014205 (2023)
    • 38. Ma, Z., Qu, R., Xu, J.: Response solutions of 2-dimensional degenerate systems under quasi-periodic perturbations. J. Differ. Equ. 360,...
    • 39. Nussbaum, R.D.: Periodic solutions of analytic functional differential equations are analytic. Michigan Math. J. 20, 249–255 (1973)
    • 40. Petrov, N.P., de la Llave, R., Vano, J.A.: Torus maps and the problem of a one-dimensional optical resonator with a quasiperiodically...
    • 41. Si, W., Si, J.: Response solutions and quasi-periodic degenerate bifurcations for quasi-periodically forced systems. Nonlinearity 31(6),...
    • 42. Si,W., Yi, Y.: Response solutions in degenerate oscillators under degenerate perturbations. Ann. Henri Poincaré 23(1), 333–360 (2022)
    • 43. Su, X., de la Llave, R.: KAM theory for quasi-periodic equilibria in one-dimensional quasi-periodic media. SIAM J. Math. Anal. 44(6),...
    • 44. Walther, H.-O.: The solution manifold and C1-smoothness for differential equations with statedependent delay. J. Differ. Equ. 195(1),...
    • 45. Walther, H.-O.: Solution manifolds which are almost graphs. J. Differ. Equ. 293, 226–248 (2021)
    • 46. Xu, J.: Persistence of lower dimensional degenerate invariant tori with prescribed frequencies in Hamiltonian systems with small parameter....
    • 47. Xu, J., Jiang, S.: Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under...
    • 48. Yang, J., Gimeno, J., de la Llave, R.: Parameterization method for state-dependent delay perturbation of an ordinary differential equation....
    • 49. Yang, J., Gimeno, J., de la Llave, R.: Persistence and smooth dependence on parameters of periodic orbits in functional differential equations...
    • 50. Yang, X., Xu, J.: Response solutions of a class of degenerate quasi-periodic systems with a small parameter. Discrete Contin. Dyn. Syst....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno