Ir al contenido

Documat


Periodic solutions for a class of asymptotically linear damped vibration problems with resonance at infinity

  • Yuanhao Wang [1] ; Zihan Zhang [1] ; Guanggang Liu [1]
    1. [1] Liaocheng University

      Liaocheng University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01101-0
  • Enlaces
  • Resumen
    • In this paper, we consider a class of asymptotically linear damped vibration problems with resonance at infinity. Compared with the existing results, under this resonance condition the functional corresponding to the problem may not satisfy the compactness condition. By combining the penalized functional technique, Morse theory and two critical point theorems, we obtain the existence and multiplicity of nontrivial periodic solutions.

  • Referencias bibliográficas
    • 1. Bartolo, P.,Benci,V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance...
    • 2. Bartsch, T., Li, S.J.: Critical point theory for asymptotically quadratic functionals and applications to problems with resonance. Nonlinear...
    • 3. Benci, V., Fortunato, D.: Periodic solutions of asymptotically linear dynamical systems. Nonlinear Differ. Equ. Appl. 1(3), 267–280 (1994)
    • 4. Chang, K.C.: Infinite dimensional Morse theory and multiple solution problems. Springer (1993)
    • 5. Chen, G.W.: Infinitely many nontrivial periodic solutions for damped vibration problems with asymptotically linear terms. Appl. Math. Comput....
    • 6. Chen, G.W.: Periodic solutions of superquadratic damped vibration problems. Appl. Math. Comput. 270, 794–801 (2015)
    • 7. Chen, G.W.: Damped vibration problems with nonlinearities being sublinear at both zero and infinity. Math. Method Appl. Sci. 39(6), 1505–1512...
    • 8. Chen, G.W., Schechter, M.: Multiple periodic solutions for damped vibration systems with general nonlinearities at infinity. Appl. Math....
    • 9. Chen, J., Liu, Z.H., Lomovtsev, F.E., Obukhovskii, V.: Optimal feedback control for a class of secondorder evolution differential inclusions...
    • 10. Ghoussoub, N.: Duality and perturbation methods in critical point theory. Number 107. Cambridge University Press (1993)
    • 11. Goodarzi, Z.,Mokhtarzadeh,M.R., Pournaki,M.R., Razani, A.: A note on periodic solutions of matrix Riccati differential equations. Appl....
    • 12. Goodarzi, Z., Razani, A., Mokhtarzadeh, M.R.: A periodic solution of the coupled matrix Riccati differential equations. Miskolc Math....
    • 13. Graef, J.R., Heidarkhani, S., Kong, L.: Nontrivial periodic solutions to second-order impulsive Hamiltonian systems. Electron. J. Differ....
    • 14. Graef, J.R., Heidarkhani, S.,Kong, L.:Multiple periodic solutions for a per-turbed second-order impulsive Hamiltonian systems. Int. J....
    • 15. Graef, J.R., Heidarkhani, S., Kong, L.: Infinitely many periodic solutions to a class of perturbed second-order impulsive Hamiltonian...
    • 16. Heidarkhani, S., Afrouzi, G.A., Ferrara, M., Caristi, G., Moradi, S.: Existence results for impulsive damped vibration systems. Bull....
    • 17. Heidarkhani, S., Ferrara, M., Salari, A.: Infinitely many solutions for a class of perturbed damped vibration problems. Math. Rep. 19(3),...
    • 18. Heidarkhani, S., Ferrara, M., Salari, A.: Infinitely many solutions for a class of perturbed damped vibration problems. Math. Rep. 19(3),...
    • 19. Heidari Tavani, M.R., Afrouzi, G.A., Heidarkhani, S.: Multiple solutions for a class of perturbed damped vibration problems. J. Math....
    • 20. Jiang, S., Xu, H.J., Liu, G.G.: Multiplicity of periodic solutions for a class of new super-quadratic damped vibration problems. J. Dyn....
    • 21. Lazzo, M.: Nonlinear differential problems and morse theory. Nonlinear Anal. TMA. 30(1), 169–176 (1997)
    • 22. Li, S.J., Liu, J.Q.: Computations of critical groups at degenerate critical point and applications to nonlinear differential equations...
    • 23. Li, X., Wu, X., Wu, K.: On a class of damped vibration problems with super-quadratic potentials. Nonlinear Anal. TMA. 72(1), 135–142 (2010)
    • 24. Liu, G.G., Li, Y., Yang, X.: Rotating periodic solutions for asymptotically linear second-order Hamiltonian systems with resonance at...
    • 25. Liu, G.G., Shi, S.Y.: Existence and multiplicity of periodic solutions for damped vibration problems with nonlinearity of linear growth....
    • 26. Liu, Z.H., Papageorgiou, N.S.: Periodic systems with time dependent maximal monotone operators. Acta Math. Sci. 44, 1280–1300 (2024)
    • 27. Liu, Z.L., Su, J.B.,Wang, Z.Q.: A twist condition and periodic solutions of Hamiltonian systems. Adv. Math. 218(6), 1895–1913 (2008)
    • 28. Liu, Z.L., Su, J.B., Wang, Z.Q.: Solutions of elliptic problems with nonlinearities of linear growth. Calc. Var. Partial Differ. Equ....
    • 29. Lv, P., Lin, G., Lv, X.: The asymptotic behaviors of solutions for higher-order (m1, m2)-coupled Kirchhoff models with nonlinear strong...
    • 30. Masiello, A., Pisani, L.: Asymptotically linear elliptic problems at resonance. Ann. Math. Pura Appl. 4, 1–13 (1996)
    • 31. Mawhin, J.,Willem,M.: Critical point theory andHamiltonian systems, applied mathematical sciences, vol. 74. Springer, New York (1989)
    • 32. Mokhtarzadeh, M.R., Pournaki, M.R., Razani, A.: A note on periodic solutions of Riccati equations. Nonlinear Dyn. 62, 119–125 (2010)
    • 33. Mokhtarzadeh, M.R., Pournaki, M.R., Razani, A.: An existence-uniqueness theorem for a class of boundary value problems. Fixed Point Theory...
    • 34. Peng, Z., Lv, H.Y., Chen, G.W.: Damped vibration problems with sign-changing nonlinearities: infinitely many periodic solutions. Bound....
    • 35. Pipan, J., Schechter, M.: Non-autonomous second order Hamiltonian systems. J. Differ. Equ. 257(2), 351–373 (2014)
    • 36. Pournaki, M.R., Razani, A.: On the existence of periodic solutions for a class of generalized forced Liénard equations. Appl. Math. Lett....
    • 37. Razani, A.: An existence theorem for ordinary differential equation in Menger probabilistic metric space. Miskolc Math. Notes 15(2), 711–716...
    • 38. Solimini, S.: Morse index estimates in min-max theorems. Manuscripta Math. 63(4), 421–453 (1989)
    • 39. Su, J.B., Liu, Z.L.:Abounded resonance problem for semilinear elliptic equations.Discrete Continuous Dyn. Syst. 19(2), 431–445 (2007)
    • 40. Tang, C.L., Wu, X.P.: Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems. J....
    • 41. Tang, C.L., Wu, X.P.: Periodic solutions for a class of new superquadratic second order Hamiltonian systems. Appl. Math. Lett. 34, 65–71...
    • 42. Tang, X.H., Jiang, J.C.: Existence and multiplicity of periodic solutions for a class of second-order Hamiltonian systems. Comput. Math....
    • 43. Villagran, O.P.V., Nonato, C.A., Raposo, C.A., Ramos, A.J.A.: Stability for a weakly coupled wave equations with a boundary dissipation...
    • 44. Wu, X., Chen, S.X., Teng, K.M.: On variational methods for a class of damped vibration problems. Nonlinear Anal. TMA. 68(6), 1432–1441...
    • 45. Yang, M.H., Chen, Y.F., Xue, Y.F.: Infinitely many periodic solutions for a class of second-order Hamiltonian systems. Acta Math. Appl....
    • 46. Zhang, X.Y.: Infinitely many solutions for a class of second-order damped vibration systems. Electron. J. Qual. Theory Differ. Equ. 2013(15),...
    • 47. Zhao, J., Chen, J., Liu, Z.H.: Second order evolutionary problems driven by mixed quasi-variationalhemivariational inequalities. Commun....
    • 48. Zou,W.M., Li, S.J.: Infinitely many solutions for Hamiltonian systems. J. Differ. Equ. 186(1), 141–164 (2002)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno