Ir al contenido

Documat


Chaos Control and Synchronization of a New Fractional Laser Chaotic System

  • Shiva Eshaghi [1] ; Nematollah Kadkhoda [2] ; Mustafa Inc [3]
    1. [1] Kermanshah University of Technology

      Kermanshah University of Technology

      Irán

    2. [2] University of Technology

      University of Technology

      Rusia

    3. [3] China Medical University

      China Medical University

      Taiwán

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01097-7
  • Enlaces
  • Resumen
    • In this article, we introduce a new fractional laser chaotic system derived from the Lorenz–Haken equations. We investigate the complex dynamics of the proposed system consisting chaos, stability, control and synchronization of chaos. Moreover, we numerically reveal the nonlinear dynamics of the fractional laser chaotic system through the phase portraits, time histories and bifurcation diagrams. Also, we indicate the chaotic behaviors of the system by means of Lyapunov exponents, bifurcation diagrams versus all parameters along the state variables, phase portraits and time histories with different trajectories and initial conditions. The necessary conditions to eliminate the chaotic vibration of the system are obtained via the feedback control procedure.

      Meanwhile, a synchronization mechanism based on the feedback control technique is achieved for coupled fractional laser chaotic systems. Furthermore, we show that the fractional derivative order is very effective on reducing the irregular and chaotic behaviors of the system.

  • Referencias bibliográficas
    • 1. Agrawal, G.P.: Nonlinear Fiber Optics, 2nd edn. Academic, New York (1995)
    • 2. Baleanu, D., Sajjadi, S.S., Asad, J.H., Jajarmi, A., Estiri, E.: Hyperchaotic behaviors, optimal control, and synchronization of a nonautonomous...
    • 3. Banerjee, S., Saha, P., Chowdhury, A.R.: Chaotic aspects of lasers with host-induced nonlinearity and its control. Phys. Lett. A 291, 103–114...
    • 4. Banerjee, S., Mukhopadhyay, S., Rondoni, L.: Multi-image encryption based on synchronization of chaotic lasers and iris authentication....
    • 5. Blasius, B.,Huppert, A., Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399, 354–359...
    • 6. Chen, G., Yu, H.: On time-delayed feedback control of chaotic systems. IEEE Trans. Circuits Syst. 46, 767–772 (1999)
    • 7. Chen, M., Han, Z.: Controlling and synchronizing chaotic Genesio system via nonlinear feedback control. Chaos Solitons Fractals 17, 709–716...
    • 8. Cuomo, K.M., Oppenheim, V.: Circuit implementation of synchronized chaos with application to communication. Phys. Rev. Lett. 71, 65–68...
    • 9. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, New York (2010)
    • 10. Dousseh, P.Y., Ainamon, C., Miwadinou, C.H., Monwanou, A.V., Chabi-Orou, J.B.: Chaos control and synchronization of a new chaotic financial...
    • 11. Eshaghi, S., Ordokhani, Y.: Dynamical behaviors of the Caputo–Prabhakar fractional chaotic satellite system. Iran. J. Sci. Technol. Trans....
    • 12. Eshaghi, S., Ordokhani, Y.: Dynamical analysis of a Prabhakar fractional chaotic autonomous system. In: Pinto, C.M. (ed.) Nonlinear Dynamics...
    • 13. Eshaghi, S., Khoshsiar Ghaziani, R., Ansari, A.: Hopf bifurcation, chaos control and synchronization of a chaotic fractional-order system...
    • 14. Eshaghi, S., Khoshsiar Ghaziani, R., Ansari, A.: Stability and Chaos control of regularized Prabhakar fractional dynamical systems without...
    • 15. Ferreira, B.B., de Paula, A.S., Savi, M.A.: Chaos control applied to heart rhythm dynamics. Chaos Solitons Fractals 44, 587–599 (2011)
    • 16. Fuh, C.C., Tung, P.C.: Controlling chaos using differential geometric method. Phys. Rev. Lett. 75, 2952–2955 (1995)
    • 17. He, S., Natiq, H., Banerjee, S., Sun, K.: Complexity and chimera states in a network of fractional-order laser systems. Symmetry 13(341),...
    • 18. Kanter, I., Kopelowitz, E., Kinzel, W.: Public channel cryptography: Chaos synchronization and Hilberts tenth problem. Phys. Rev. Lett....
    • 19. Klein, E., Mislovaty, R., Kanter, I., Kinzel,W.: Public-channel cryptography using chaos synchronization. Phys. Rev. E 72(1), 016214 (2005)
    • 20. Kocarev, L., Parlitz, U.: General approach for chaotic synchronization with application to communication. Phys. Rev. Lett. 74, 5028–5031...
    • 21. Kong, X., Yu, F., Yao, W., Xu, C., Zhang, J., Cai, S., Wang, C.: A class of 2n+1 dimensional simplest Hamiltonian conservative chaotic...
    • 22. Lai, Q., Chen, Z.: Grid-scroll memristive chaotic system with application to image encryption. Chaos Solitons Fractals 170, 113341 (2023)....
    • 23. Lai, Q., Chen, Z.: Dynamical analysis and finite-time synchronization of grid-scroll memristive chaotic system without equilibrium. Chaos...
    • 24. Lai, Q., Wan, Z., Zhang, H., Chen, G.: Design and analysis of multiscroll memristive hopfield neural network with adjustable memductance...
    • 25. Lai, Q., Yang, L., Chen, G.: Design and performance analysis of discrete memristive hyperchaotic systems with stuffed cube attractors...
    • 26. Li, Y., Chen, L., Cai, Z., Zhao, X.: Study on chaos synchronization in the Belousov–Zhabotinsky chemical system. Chaos Solitons Fractals...
    • 27. Li, X., Mou, J., Xiong, L., Wang, Z.: Fractional-order double-ring erbium-doped fiber laser chaotic system and its application on image...
    • 28. Ma, G., Zhou, Q., Yu, W., Biswas, A., Liu, W.: Stable transmission characteristics of double-hump solitons for the coupled Manakov equations...
    • 29. Meng, F., Zeng, X.,Wang, Z.: Dynamical behavior and synchronization in time-delay fractional-order coupled neurons under electromagnetic...
    • 30. Metzler, R., Schick, W., Kilian, H.G., Nonnenmacher, T.F.: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys....
    • 31. Mohammadzadeh, A., Ghaemi, S.: Synchronization of uncertain fractional-order hyperchaotic systems by using a new self-evolving non-singleton...
    • 32. Mislovaty, R., Klein, E., Kanter, I., Kinzel, W.: Public channel cryptography by synchronization of neural networks and chaotic maps....
    • 33. Natiq, H., Said, M.R.M., Al-Saidi, N.M.G., Kilicman, A.: Dynamics and complexity of a new 4D chaotic laser system. Entropy 21(34), 1–18...
    • 34. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)
    • 35. Peng, Q., Jian, J.: Estimating the ultimate bounds and synchronization of fractional-order plasma chaotic systems. Chaos Solitons Fractals...
    • 36. Petras, I.: Fractional-Order Nonlinear Systems: Modeling. Analysis and Simulation. Springer, London (2011)
    • 37. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
    • 38. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)
    • 39. Roohi, M., Zhang, C., Chen, Y.: Adaptive model-free synchronization of different fractional-order neural networks with an application...
    • 40. Samardzija, N., Greller, L.D.: Explosive route to chaos through a fractal torus in a generalized Lotka– Volterra model. Bull. Math. Biol....
    • 41. Silva, J.G., Ribeiro, A.C.O., Camargo, R.F., Mancera, P.F.A., Santos, F.L.P.: Stability analysis and numerical simulations via fractional...
    • 42. Syed Ali, M., Hymavathi, M., Senan, S., Shekher, V., Arik, S.: Global asymptotic synchronization of impulsive fractional-order complex-valued...
    • 43. van Tartwijk, G.H.M., Agrawal, G.P.: Nonlinear dynamics in the generalized Lorenz–Haken model. Opt. Commun. 133, 565–577 (1997)
    • 44. van Tartwijk, G.H.M., Agarwal, G.P.: Absolute instabilities in lasers with host-induced nonlinearities and dispersion. IEEE J. Quantum...
    • 45. Torres, F.J.,Guerrero, G.V., García, C.D., Gómez, J.F.,Adam, M., Escobar, R.F.:Master-slave synchronization of robot manipulators driven...
    • 46. Wei, J.,Yu, C.: Stability and bifurcation analysis in the cross-coupled laser modelwith delay.Nonlinear Dyn. 66, 29–38 (2011). https://doi.org/10.1007/s11071-010-9908-y
    • 47. Weiss, C.O., Vilaseca, R.: Dynamics of Lasers. Weinheim, New York (1991)
    • 48. Wiercigroch,M., Krivtsov, A.M.: Frictional chatter in orthogonal metal cutting. Philos. Trans. R. Soc. A 359, 713–738 (2001)
    • 49. Xiong, P.Y., Jahanshahi, H., Alcaraz, R., Chu, Y.M., Gómez-Aguilar, J.F., Alsaadi, F.E.: Spectral entropy analysis and synchronization...
    • 50. Yang, X.S., Yuan, Q.: Chaos and transient chaos in simple Hopfield neural networks. Neurocomputing 69(1), 232–241 (2005)
    • 51. Yang, F., Mou, J., Ma, C., Cao, Y.: Dynamic analysis of an improper fractional-order laser chaotic system and its image encryption application....
    • 52. Yao,W., Gao, K., Zhang, Z., Cui, L., Zhang, J.: An image encryption algorithm based on a 3D chaotic Hopfield neural network and random...
    • 53. Yao,W.,Wang, C., Sun,Y., Zhou, C.: Robustmultimode function synchronization ofmemristive neural networks with parameter perturbations...
    • 54. Yao,W.,Wang, C., Sun, Y., Gong, S., Lin, H.: Event-triggered control for robust exponential synchronization of inertial memristive neural...
    • 55. Yassen, M.T.:Adaptive chaos control and synchronization for uncertain newchaotic dynamical system. Phys. Lett. A 350, 36–43 (2006)
    • 56. Yassen, M.T.: Controlling, synchronization and tracking chaotic Liu system using active backstepping design. Phys. Lett. A 360, 582–587...
    • 57. Yu, F., Qian, S., Chen, X., Huang, Y., Liu, L., Shi, C., Cai, S., Song, Y.,Wang, C.: A new 4D four-wing memristive hyperchaotic system:...
    • 58. Zhou, S., Li, H., Zhu, Z.Z.: Chaos control and synchronization in a fractional neuron network system. Chaos Solitons Fractals 36(4), 973–984...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno