Ir al contenido

Documat


Controllability of Nonlinear Quaternion-Valued Systems with Input-Delay

  • Denghao Pang [1] ; Yuanfan Pu [1] ; Kaixuan Liu [2] ; Wei Jiang [1]
    1. [1] Anhui University

      Anhui University

      China

    2. [2] Anhui University & Stony Brook University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01098-6
  • Enlaces
  • Resumen
    • The utilization of quaternions in nonlinear systems with input delays is presented in this paper, aiming to investigate the controllability of nonlinear quaternion-valued systems (QVSs). In view of the non-commutativity of quaternion multiplication, the system is decomposed into four real-valued subsystems. The existence and uniqueness of solutions for QVSs with input delays are demonstrated using the contraction mapping principle and Laplace transform. To achieve system controllability amidst distinct input delays, two categories of Grammatrices along with their respective control functions are established, and their feasibility are demonstrated by Arzela-Ascoli theorem and the Schaefer fixed point theorem. Finally, numerical simulations are conducted to validate the theoretical findings.

  • Referencias bibliográficas
    • 1. Horwitz, L.P.,Biedenharn, L.C.: Quaternion quantum mechanics: second quantization and gauge fields. Ann. Phys. 157(2), 432–488 (1984)
    • 2. Miron, S., Bihan, N.L., Mars, J.I.: Quaternion-MUSIC for vectorsensor array processing. IEEE Trans. Signal Process. 54(4), 1218–1229 (2006)
    • 3. Proškova, J.: Description of protein secondary structure using dual quaternions. J. Mol. Struct. 1076, 89–93 (2014)
    • 4. Yang, Y.: Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Approach; CRC Press: Boca Raton. FL, USA (2019)
    • 5. Babu, N.R., Balasubramaniam, P.: Master-slave synchronization of a new fractal-fractional order quaternion-valued neural networks with...
    • 6. Chen, Y.Y., Xiao, X.L., Zhou, Y.C.: Low-rank quaternion approximation for color image processing. IEEE Trans. Image Process. 29, 1426–1439...
    • 7. Chanyal, B.C.: Quaternionic approach on the Dirac-Maxwell, Bernoulli and Navier-Stokes equations for dyonic fluid plasma. Int. J. Mod....
    • 8. Zuo, S., Ma, H.: The perturbation of the Moore-Penrose inverse of quaternion tensor via theQT-product. J. Appl. Math. Comput. (2023). https://doi.org/10.1007/s12190-023-01909-0
    • 9. Vince, J.: Vince: Quaternions for computer graphics. Springer, London (2011)
    • 10. Tsiotras, P.,Valverde, A.: Dual quaternions as a tool formodeling, control, and estimation for spacecraft robotic servicing missions....
    • 11. Dimitrid, R., Goldsmith, B.: Sir William Rowan Hamilton. The Mathematical Intelligencer 11(2), 29–30 (1989)
    • 12. Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)
    • 13. Kou, K.I., Xia, Y.H.: Linear quaternion differential equations: basic theory and fundamental results. Stud. Appl. Math. 141(1), 3–45 (2018)
    • 14. Suo, L.P., Fˇeckan, M., Wang, J.R.: Quaternion-valued linear impulsive differential equations. Qual. Theory Dyn. Syst. 20(33), 1–78 (2021)
    • 15. Zhang, X.: Global structure of quaternion polynomial differential equations. Commun. Math. Phys. 303(2), 301–316 (2011)
    • 16. Kou, K.I., Liu,W.K., Xia, Y.H.: Solve the linear quaternion-valued differential equations having multiple eigenvalues. J. Math. Phys....
    • 17. Fu, T., Kou, K.I., Wang, J.: Relative controllability of quaternion differential equations with delay. SIAM J. Control. Optim. 61(5),...
    • 18. Zhu, J.W., Sun, J.T.: Existence and uniqueness results for quaternion-valued nonlinear impulsive differential systems. J. Syst. Sci. Complexity...
    • 19. Rajchakit, G., Chanthorn, P., Kaewmesri, P., et al.: Global mittag-leffler stability and stabilization analysis of fractional-order quaternion-valued...
    • 20. Walcher, S., Zhang, X.: Polynomial differential equations over the quaternions. J. Differ. Equ. 282, 566–595 (2021)
    • 21. Suo, L.P., Fˇeckan, M., Wang, J.R.: Existence of periodic solutions to quaternion-valued impulsive differential equations. Qual. Theory...
    • 22. Kalman, R.E.: On the general theory of control systems. IRE Trans. Autom. Control. 4, 110 (1959)
    • 23. Muni, V.S., George, R.K.: Controllability of semilinear impulsive control systems with multiple time delays in control. IMA J. Math. Control....
    • 24. Priyadharsini, J.,Balasubramaniam, P.: Controllability of fractional noninstantaneous impulsive integro differential stochastic delay...
    • 25. Mabel, L.R., Balachandran, K., Ma, Y.K.: Controllability of nonlinear stochastic fractional higher order dynamical systems. Fract. Calc....
    • 26. Najariyan, M., Pariz, N.: Stability and controllability of fuzzy singular dynamical systems. J. Franklin Inst. 359(15), 8171–8187 (2022)
    • 27. Govindaraj, V., George, R.K.: Controllability of fractional dynamical systems: a functional analytic approach. Math. Control Relat. Fields...
    • 28. Balachandran, K., Govindaraj, V., Rodriguez-Germa, L., et al.: Controllability of nonlinear higher order fractional dynamical systems....
    • 29. Si, Y.C., Wang, J.R.: Relative controllability of multi-agent systems with input delay and switching topologies. Syst. Control Lett. 171,...
    • 30. Klickstein, I., Sorrentino, F.: Controlling network ensembles. Nat. Commun. 12(1), 1–12 (2021)
    • 31. Ahmad, I., Rahman, G.U., Ahmad, S., Alshehri, N.A., Elagan, S.K.: Controllability of a damped nonlinear fractional order integrodifferential...
    • 32. Balachandran, K., Zhou, Y., Kokila, J.: Relative controllability of fractional dynamical systems with delays in control. Commun. Nonlinear...
    • 33. Chen, D., Feckan, M., Wang, J.R.: Investigation of controllability and observability for linear quaternion-valued systems from its complex-valued...
    • 34. Suo, L., Feckan, M.,Wang, J.R.: Controllability and observability for linear quaternion-valued impulsive differential equations. Commun....
    • 35. Schaefer, H.: Über die Methode der a Priori-Schranken. Math. Annalen 129, 415–416 (1955)
    • 36. Jiang, W.: The controllability of fractional control systems with control delay. Comput. Math. Appl. 64, 3153–9 (2012)
    • 37. Jiang,W.: On the delay interval in which the control delay systems are stabilizable. Complexity 2020, 1–9 (2020)
    • 38. Sathiyaraj, T., Balasubramaniam, P.: Null controllability of nonlinear fractional stochastic large-scale neutral systems. Differ. Equ....
    • 39. Wang, J., Ahmed, H.M.: Null controllability of nonlocal Hilfer fractional stochastic differential equations. Miskolc Math. Notes 18, 1073–1083...
    • 40. Vadivel, R., Sabarathinam, S., Wu, Y., et al.: New results on T-S fuzzy sampled-data stabilization for switched chaotic systems with its...
    • 41. Bhagyaraj, T., Sabarathinam, S., Popov, V., et al.: Fuzzy sampled-data stabilization of hidden oscillations in a memristor-based dynamical...
    • 42. Ahmed, H.M., Zhu, Q.: Exploration nonlocal controllability for Hilfer fractional differential inclusions with Clarke subdifferential and...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno