Ir al contenido

Documat


Almost Periodic Dynamics of a Delayed Patch-Constructed Nicholson’s Blowflies System

  • Qian Wang [1] ; Lihong Huang [2]
    1. [1] Changsha University of Science and Technology

      Changsha University of Science and Technology

      China

    2. [2] Changsha University

      Changsha University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01129-2
  • Enlaces
  • Resumen
    • In this paper,we consider a delayed patch-constructed Nicholson’s blowflies system in almost periodic environment. By combining the innovative inequality technique with the basic properties of almost periodic functions and the fluctuation lemma, some testable criteria are achieved to verify the global exponential stability of the addressed almost periodic system under more general conditions, which improve and complement the existing literature. In particular, the assumptions employed in the established exponential stability criteria are sharp when the addressed system degenerates into the scalar Nicholson’s blowflies equation. Moreover, a numerical example is presented to illustrate the effectiveness of the theoretical results.

  • Referencias bibliográficas
    • 1. Nicholson, A.J.: An outline of the dynamics of animal populations. Aust. J. Zool. 2, 9–65 (1954)
    • 2. Gurney,W.S., Blythe, S.P., Nisbet, R.M.: Nicholson’s blowflies (revisited). Nature 287, 17–21 (1980)
    • 3. Berezansky, L., Braverman, E., Idels, L.: Nicholson’s blowflies differential equations revisited: main results and open problems. Appl....
    • 4. Ding, X.: Global asymptotic stability of a scalar delay Nicholson’s blowflies equation in periodic environment. Electron. J. Qual. Theory...
    • 5. Hetzer, G., Shen, W.: Uniform persistence, coexistence, and extinction in almost periodic/ nonautonomous competition diffusion systems....
    • 6. Li, L., Ding, X., Fan, W.: Almost periodic stability on a delay Nicholson’s blowflies equation. J. Exp. Theor. Artif. Intell. (2023). https://doi.org/10.1080/0952813X.2023.2165718
    • 7. Faria, T.: Global asymptotic behaviour for a Nicholson model with patch structure andmultiple delays. Nonlinear Anal. Theory Methods Appl....
    • 8. Liu, B.: Global stability of a class of Nicholson’s blowflies model with patch structure and multiple time-varying delays. Nonlinear Anal....
    • 9. Cao, Q., Wang, G., Zhang, H., Gong, S.: New results on global asymptotic stability for a nonlinear density-dependent mortality Nicholson’s...
    • 10. Huang, C.,Zhang, H., Huang, L.:Almost periodicity analysis for a delayed Nicholson’s blowflies model with nonlinear density-dependent...
    • 11. Cao, Q., Wang, G., Qian, C.: New results on global exponential stability for a periodic Nicholson’s blowflies model involving time-varying...
    • 12. Huang, C., Yang, X., Cao, J.: Stability analysis of Nicholson’s blowflies equation with two different delays. Math. Comput. Simul. 171,...
    • 13. Xu, Y., Cao, Q., Guo, X.: Stability on a patch structure Nicholson’s blowflies system involving distinctive delays. Appl. Math. Lett....
    • 14. Long, X.: Novel stability criteria on a patch structure Nicholson’s blowflies model with multiple pairs of time-varying delays. Aims Math....
    • 15. Zhang, X.: Convergence analysis of a patch structure Nicholsons blowflies system involving an oscillating death rate. J. Exp. Theor. Artif....
    • 16. Qian, C.: New periodic stability for a class of Nicholson’s blowflies models with multiple different delays. Int. J. Control 94(12), 3433–3438...
    • 17. Faria, T.: Periodic solutions for a non-monotone family of delayed differential equations with applications to Nicholson systems. J. Differ....
    • 18. Zhao, X., Huang, C.,Liu,B., Cao, J.: Stability analysis of delay patch-constructed Nicholson’s blowflies system. Math. Comput. Simul....
    • 19. Liu, B.: Global exponential stability of positive periodic solutions for a delayed Nicholson’s blowflies model. J. Math. Anal. Appl. 412,...
    • 20. Liu, B.:Newresults on global exponential stability of almost periodic solutions for a delayed Nicholson blowflies model. Annales Polonici...
    • 21. Xiong, W.: New results on positive pseudo-almost periodic solutions for a delayed Nicholson’s blowflies model. Nonlinear Dyn. 85(1), 1–9...
    • 22. Zhang, H., Cao, Q., Yang, H.: Asymptotically almost periodic dynamics on delayed Nicholson-type system involving patch structure. J. Inequal....
    • 23. Faria, T.: Permanence for a class of non-autonomous delay differential systems. Electron. J. Qual. Theory Differ. Equ. 49, 1–15 (2018)
    • 24. Smith, H.L.: Monotone Dynamical Systems. Mathematical Surveys and Monographs.American Mathematical Society, Providence (1995)
    • 25. Hale, J., Lunel, S.V.M.: Introduction to Functional Differential Equations. Springer, New York (1993)
    • 26. Smith, H.L.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, New York (2011)
    • 27. Fink, A.M.: Almost Periodic Differential Equations. Lecture Notes in Mathematics, vol. 377. Springer, Berlin (1974)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno