Ir al contenido

Documat


Exploring Solitary Waves and Nonlinear Dynamics in the Fractional Chaffee–Infante Equation: A Study Beyond Conventional Diffusion Models

  • Taher A. Nofal ; Aleksander Vokhmintsev ; Mostafa M. A. Khater ; Xiao Zhang [1]
    1. [1] Harbin Institute of Technology

      Harbin Institute of Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01121-w
  • Enlaces
  • Resumen
    • The current study examines the (2 + 1)-dimensional fractional Chaffee–Infante (FCI) model, which is a nonlinear evolution equation that characterizes the processes of pattern generation, reaction-diffusion, and nonlinear wave propagation. The construction of analytical solutions involves the use of analytical methods, namely the Khater III and improved Kudryashov schemes. The He’s Variational Iteration method is employed as a numerical approach to validate the accuracy of the obtained solutions.

      The main objective of this study is to get novel analytical and numerical solutions for the FCI model, with the intention of gaining a deeper understanding of the system’s dynamics and its possible implications in the fields of fluid mechanics, plasma physics, and optical fiber communications. The study makes a valuable contribution to the area of nonlinear science via the use of innovative analytical and numerical methodologies in the FCI model. This research enhances our comprehension of pattern creation, reaction–diffusion phenomena, and the propagation of nonlinear waves in diverse physical scenarios.

  • Referencias bibliográficas
    • 1. Attia, R.A.M., Alfalqi, S.H., Alzaidi, J.F., Vokhmintsev, A., Khater, M.M.A.: Transcending classical diffusion models: nonlinear dynamics...
    • 2. Arshed, S., Akram, G., Sadaf, M., Irfan, M., Inc, M.: Extraction of exact soliton solutions of (2+1)- dimensional Chaffee–Infante equation...
    • 3. Zhu, C., Al-Dossari, M., Rezapour, S., Gunay, B.: On the exact soliton solutions and different wave structures to the (2+1) dimensional...
    • 4. Tetik, D., Akbulut, A., çelik, N.: Applications of two kinds of Kudryashov methods for time fractional (2 + 1) dimensional Chaffee–Infante...
    • 5. Faridi,W.A., Yusuf, A., Akgül, A., Tawfiq, F.M.O., Tchier, F., Al-deiakeh, R., Sulaiman, T.A., Hassan, A.M., Ma, W.-X.: The computation...
    • 6. Sadaf, M., Arshed, S., Akram, G., Ali, M.R., Bano, I.: Analytical investigation and graphical simulations for the solitary wave behavior...
    • 7. Günhan Ay, N., Ya¸sar, E.: The residual symmetry, Bäcklund transformations, CRE integrability and interaction solutions: (2+1)-dimensional...
    • 8. Sebogodi, M.C., Muatjetjeja, B., Adem, A.R.: Traveling wave solutions and conservation laws of a generalized Chaffee–Infante equation in...
    • 9. Mahmood, A., Abbas, M., Akram, G., Sadaf, M., Riaz, M.B., Abdeljawad, T.: Solitary wave solution of (2+1)-dimensional Chaffee–Infante...
    • 10. Khater, M.M.A., Alfalqi, S.H., Alzaidi, J.F., Attia, R.A.M.: Plenty of accurate novel solitary wave solutions of the fractional Chaffee–Infante...
    • 11. Khater,M.M.A., Attia, R.A.M.: Simulating the behavior of the population dynamics using the non-local fractional Chaffee–Infante equation....
    • 12. ¸ Sengül, T., Tiryakioglu, B.: Dynamic transitions and bifurcations of 1D reaction–diffusion equations: the self-adjoint case. Math. Methods...
    • 13. Kumar, S., Almusawa, H., Hamid, I.,Akbar, M.A., Abdou, M.A.: Abundant analytical soliton solutions and Evolutionary behaviors of various...
    • 14. Sulaiman, T.A., Yusuf, A., Alquran, M.: Dynamics of lump solutions to the variable coefficients (2+1)-dimensional Burger’s and Chaffee–Infante...
    • 15. Riaz, M.B., Atangana, A., Jhangeer, A., Junaid-U-Rehman, M.: Some exact explicit solutions and conservation laws of Chaffee–Infante equation...
    • 16. Khater, M.M.A., Ghanbari, B.: On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via...
    • 17. Younas, U., Sulaiman, T., Ismael, H.F., Shah, N.A., Eldin, S.M.: On the lump interaction phenomena to the conformable fractional (2+...
    • 18. Younas, U., Seadawy, A.R.,Younis, M.,Rizvi, S.T., Althobaiti, S.: Diversewave propagation in shallow waterwaveswith theKadomtsev–Petviashvili–Benjamin–Bona–Mahony...
    • 19. Nasreen, N., Younas, U., Lu, D., Zhang, Z., Rezazadeh, H., Hosseinzadeh,M.: Propagation of solitary and periodic waves to conformable...
    • 20. Nasreen, N., Younas, U., Sulaiman, T.A., Zhang, Z., Lu, D.: A variety of M-truncated optical solitons to a nonlinear extended classical...
    • 21. Ismael, H.F., Younas, U., Sulaiman, T.A., Nasreen, N., Shah, N.A., Ali, M.R.: Non classical interaction aspects to a nonlinear physical...
    • 22. Nasreen, N., Lu, D., Zhang, Z., Akgül, A., Younas, U., Nasreen, S., Al-Ahmadi, A.N.: Propagation of optical pulses in fiber optics modelled...
    • 23. Hosseini, K., Alizadeh, F., Sadri, K., Hinçal, E., Akbulut, A., Alshehri, H., Osman, M.: Lie vector fields, conservation laws, bifurcation...
    • 24. Hosseini, K., Alizadeh, F., Hinçal, E., Baleanu, D., Akgül, A., Hassan, A.: Lie symmetries, bifurcation analysis, and Jacobi elliptic...
    • 25. Hosseini, K., Hinçal, E., Ilie, M.: Bifurcation analysis, chaotic behaviors, sensitivity analysis, and soliton solutions of a generalized...
    • 26. Rafiq, M.H., Jannat, N., Rafiq, M.N.: Sensitivity analysis and analytical study of the three-component coupled NLS-type equations in fiber...
    • 27. Rafiq,M.H., Raza, N., Jhangeer, A.: Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow...
    • 28. Raza, N., Arshed, S., Butt, A.R., Inc, M., Yao, S.-W.: Investigation of new solitons in nematic liquid crystals with Kerr and non-Kerr...
    • 29. Raza, N., Butt, A.R., Arshed, S., Kaplan, M.: A new exploration of some explicit soliton solutions of q-deformed Sinh–Gordon equation...
    • 30. Raza, N., Rani, B., Chahlaoui, Y., Shah, N.A.: A variety of new rogue wave patterns for three coupled nonlinear Maccari’s models in complex...
    • 31. Jaradat, M., Batool, A., Butt, A.R., Raza, N.: Newsolitarywave and computational solitons forKundu– Eckhaus equation. Results Phys. 43,...
    • 32. Rafiq, M.H., Raza, N., Jhangeer, A.: Nonlinear dynamics of the generalized unstable nonlinear Schrödinger equation: a graphical perspective....
    • 33. Arshad, M., Lu, D.,Wang, J.: (n+ 1)-dimensional fractional reduced differential transform method for fractional order partial differential...
    • 34. Arshad, M., Seadawy, A.R., Mehmood, A., Shehzad, K.: Lump kink interactional and breather-type waves solutions of (3+ 1)-dimensional...
    • 35. Sarwar, A., Gang, T., Arshad, M., Ahmed, I., Ahmad, M.: Abundant solitary wave solutions for spacetime fractional unstable nonlinear Schrödinger...
    • 36. Batool, S., Arshad, M., Perveen, N., Sarwar, S.: Bright optical solution for fractional Lakshmanan– Porsezian–Daniel with spatio temporal...
    • 37. Seadawy, A.R., Arshad, M., Lu, D.: The weakly nonlinear wave propagation theory for the Kelvin– Helmholtz instability in magnetohydrodynamics...
    • 38. Alquran, M., Al-deiakeh, R.: Lie–Backlund symmetry generators and a variety of novel periodicsoliton solutions to the complex-mode of...
    • 39. Alquran,M.: Necessary conditions for convex-periodic, elliptic-periodic, inclined-periodic, and rogue wave-solutions to exist for themulti-dispersions...
    • 40. Alquran,M.: Dynamic behavior of explicit elliptic and quasi periodic-wave solutions to the generalized (2+ 1)-dimensional Kundu–Mukherjee–Naskar...
    • 41. Alquran, M.: The amazing fractional Maclaurin series for solving different types of fractional mathematical problems that arise in physics...
    • 42. Alquran,M.: Investigating the revisited generalized stochastic potential-KdV equation: fractional timederivative against proportional...
    • 43. Raza, N., Rafiq, M.H., Kaplan, M., Kumar, S., Chu, Y.-M.: The unified method for abundant soliton solutions of local time fractional nonlinear...
    • 44. Tahir, M., Kumar, S., Rehman, H., Ramzan, M., Hasan, A., Osman, M.S.: Exact traveling wave solutions of Chaffee–Infante equation in (2...
    • 45. Xu, H., Chang, H., Zhang, D.: DLGA-PDE: discovery of PDEs with incomplete candidate library via combination of deep learning and genetic...
    • 46. Mao, Y.: Exact solutions to (2+1) (2 + 1) -dimensional Chaffee–Infante equation. Pramana 91(1), 9 (2018)
    • 47. Li, J., Feng, Z.: Quadratic and cubic nonlinear oscillators with damping and their applications. Int. J. Bifurc. Chaos 26(3), 1650050–350...
    • 48. Rolland, J., Bouchet, F., Simonnet, E.: Rare transitions between metastable states in the stochastic Chaffee–Infante equation., In: EGU...
    • 49. Qiang, L.,Yun, Z.,Yuanzheng,W.:Qualitative Analysis andTravellingWave Solutions for the Chaffee– Infante equation. Rep. Math. Phys. 71(2),...
    • 50. Sakthivel, R., Chun, C.: New soliton solutions of Chaffee–Infante equations using the exp-function method. Z. Naturforschung Teil A 65(3),...
    • 51. Xie, F.-D., Liu, X.-D., Sun, X.-P., Tang, D.: Application of computer algebra in solvingChaffee–Infante equation. Commun. Theor. Phys....
    • 52. Atangana, A., Alqahtani, R.T.:Modelling the spread of river blindness disease via the caputo fractional derivative and the beta-derivative....
    • 53. Atangana, A., Alkahtani, B.S.T.: Modeling the spread of R ubella disease using the concept of with local derivative with fractional parameter:...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno