Ir al contenido

Documat


Second-Order Noncanonical Delay Differential Equations with Sublinear and Superlinear Terms: New Oscillation Criteria via Canonical Transform and Arithmetic–Geometric Inequality

  • Ganesh Purushothaman [2] ; Kannan Suresh [2] ; Ethiraju Thandapani [1] ; Ercan Tunç [3]
    1. [1] University of Madras

      University of Madras

      India

    2. [2] St. Joseph’s College of Engineering
    3. [3] Tokat Gaziosmanpa¸sa University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01130-9
  • Enlaces
  • Resumen
    • In this paper, the authors present new oscillation criteria for the noncanonical secondorder delay differential equation with mixed nonlinearities (a(t)x (t)) + n j=1 q j (t)xαj (σ j (t)) = 0 using an arithmetic–geometric mean inequality.We establish our results first by transforming the studied equation into canonical form and then applying a comparison technique and integral averaging method to get new oscillation criteria. Examples are provided to illustrate the importance and novelty of their main results.

  • Referencias bibliográficas
    • 1. Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation theory for second-order linear half-linear. Superlinear and sublinear dynamics equations....
    • 2. Almarri, B., Ali, A.H., Lopes, A.M., Bazighifan, O.: Nonlinear differential equations with distributed delay: some new oscillatory solutions....
    • 3. Baculíková, B., Džurina, J.: Oscillatory criteria via linearization of half-linear second order delay differential equations. Opuscula...
    • 4. Bai, Y., Liu, L.: New oscillation criteria for second order delay differential equations with mixed nonlinearities. Discrete Dyn. Nat....
    • 5. Bazighifan, O., Cesarano, C.: A philos-type oscillation criteria for fourth-order neutral differential equations. Symmetry 12(3), 379 (2020)
    • 6. Bohner, M., Grace, S.R., Jadlovská, I.: Sharp results for oscillation of second-order neutral delay differential equations. Electron. J....
    • 7. Chatzarakis, G.E., Jadlovská, I.: Improved oscillation results for second-order half-linear delay differential equations. Hacet. J. Math....
    • 8. Chatzarakis, G.E., Grace, S.R., Jadlovská, I.: On the sharp oscillation criteria for half-linear secondorder differential equations with...
    • 9. Džurina, J.: Properties of second order differential equations with advanced and delay argument. Appl. Math. Lett. 141, 108623 (2023)
    • 10. Džurina, J.: Oscillation of second-order trinomial differential equations with retarded and advanced arguments. Appl. Math. Lett. 153,...
    • 11. Džurina, J., Baculíková, B., Jadlovská, I.: New oscillation results to fourth-order delay differential equations with damping. Electron....
    • 12. Džurina, J.,Grace, S.R., Jadlovská, I., Li, T.:Oscillation criteria for second-order Emden–Fowler delay differential equations with a...
    • 13. Erbe, L.H., Kong, Q., Zhang, B.G.: Oscillation theory for functional differential equations. Marcel Dekker, New York (1995)
    • 14. Fisnarova, S., Marík, R.: Modified Riccati technique for half-linear differential equations with delay. Electron. J. Qual. Theory Differ....
    • 15. Grace, S.R., Graef, J.R., Tunç, E.: On the oscillation of certain third order nonlinear dynamic equations with a nonlinear damping term....
    • 16. Han, Z.L., Sun, Y.B., Zhao, Y., Yang, D.W.: Oscillation criteria for certain even order neutral delay differential equations with mixed...
    • 17. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1988)
    • 18. Hassan, T.S., El-Matary, B.M.: Asymptotic behavior and oscillation of third-order nonlinear neutral differential equations with mixed...
    • 19. Hassan, T.S., Erbe, L., Peterson, A.: Forced oscillation of second order differential equations with mixed nonlinearities. Act. Math....
    • 20. Jadlovská, I.: New criteria for sharp oscillation of second-order neutral delay differential equations. Mathematics 9(17), 2089 (2021)
    • 21. Jadlovská, I.,Chatzarakis, G.E., Tunç, E.: Kneser-type oscillation theorems for second-order functional differential equations with unbounded...
    • 22. Ladde, G.S., Lakshmikanthan, V., Zhang, B.G.: Oscillation theory of differential equations with deviating arguments. Marcel Dekker, New...
    • 23. Li, C., Chen, S.: Oscillation of second-order functional differential equations with mixed nonlinearities and oscillatory potentials....
    • 24. Li, T., Rogovchenko, Yu.V.: Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term....
    • 25. Li, T., Rogovchenko, Yu.V.: On asymptotic behavior of solutions to higher-order sublinear Emden– Fowler delay differential equations....
    • 26. Li, T., Rogovchenko, Yu.V.: Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations. Monatsh. Math....
    • 27. Li, T., Rogovchenko, Yu.V.: On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations....
    • 28. Li, T., Viglialoro, G.: Boundedness for a nonlocal reaction chemotaxis model even in the attractiondominated region. Differ. Integral...
    • 29. Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porus medium problems with different sources and boundary conditions. Z....
    • 30. Moaaz, O., El-Nabulsi,R.A., Bazighifan, O.: Oscillatory behavior of fourth-order differential equations with neutral delay. Symmetry 12(3),...
    • 31. Murugadass, S., Thandapani, E., Pinelas, S.: Oscillation criteria for forced second-order mixed type quasilinear delay differential equations....
    • 32. Philos, Ch.G.: On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch....
    • 33. Shoukaku, Y., Yoshida, N.: Forced oscillation of hyperbolic equations with mixed nonlinearities. Electron. J. Qual. Theory Differ. Equ....
    • 34. Sun,Y.G., Meng, F.W.: Interval criteria for oscillation of second order differential equations with mixed nonlinearities. Appl. Math....
    • 35. Sun, Y.G., Meng, F.W.: Oscillation of second-order delay differential equations with mixed nonlinearities. Appl. Math. Comput. 207, 135–139...
    • 36. Sun, Y.G., Wong, J.S.W.: Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities. J. Math....
    • 37. Thandapani, E., Rajendiran, P.: Oscillation criteria for second order delay differential equations with mixer nonlinearities. Appl. Math....
    • 38. Thandapani, E., Murugadass, S., Pinelas, S.: Oscillation criteria for second order nonlinear differential equations with damping and mixed...
    • 39. Trench, W.F.: Canonical forms and principal systems for general disconjugate equations. Trans. Am. Math. Soc. 189, 319–327 (1974)
    • 40. Tunç, E., Kaymaz, A.: Newoscillation results for forced second order differential equations with mixed nonlinearities. Appl. Math. 3,...
    • 41. Wang, Y., Li, T., Thandapani, E.: Forced oscillation of second-order differential equations with mixed nonlinearities. J. Inequal. Appl....
    • 42. Xu, Z., Cheng, A.: Oscillation of second order differential equations with mixed nonlinearities. Turk. J. Math. 38, 688–705 (2014)
    • 43. Zhong, J., Ouyang, Z., Zou, S.: An oscillation theorem for a class of second-order forced neutral delay differential equations with mixed...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno